Skip to the main content.

MBLI Product Publications

Life Sciences Reagents Publications

pexels-lukas-669610-300x199MBL International is renowned in the life sciences industries for high quality and trusted reagents.  Find peer-reviewed publications/citations for MBL products below.

If you published using one of our products, please let us know!

Looking for publications on MHC Tetramers or QuickSwitch? Click here!

Publications by research topic

IL-18 beyond inflammation

Ohya, T., Nishimura, K., et al., 2022. Impaired Interleukin‐18 Signaling in Natural Killer Cells From Patients With Systemic Juvenile Idiopathic Arthritis. ACR Open Rheumatology. doi.org/10.1002/acr2.11426 

Wang, Z., Zeng, F.L., et al., 2022. Interleukin-37 promotes colitis-associated carcinogenesis via SIGIRR-mediated cytotoxic T cells dysfunction. Signal Transduction and Targeted Therapy, 7(1), pp.1-17. doi.org/10.1038/s41392-021-00820-z 

Tsutsuki, H., Zhang, T., et al., 2022. Subtilase cytotoxin from Shiga-toxigenic Escherichia coli impairs the inflammasome and exacerbates enteropathogenic bacterial infection. Iscience, 25(4), p.104050. Guyonvarc’h, C., Gabay, C., Lee, W., Chae, J.J. and Aksentijevich, I., 2022. Excess serum interleukin‐18 distinguishes patients with pathogenic mutations in PSTPIP1. Arthritis & Rheumatology, 74(2), pp.353-357. doi.org/10.1002/art.41976 

Stone, D.L., Ombrello, A., et al., 2022. Excess serum interleukin‐18 distinguishes patients with pathogenic mutations in PSTPIP1. Arthritis & Rheumatology, 74(2), pp.353-357. https://doi.org/10.1002/art.41976

Anti-IL-33 to investigate host defense, immune regulation, and inflammation

Angulo, Evelyn L., et al. “Comparison of IL-33 and IL-5 Family Mediated Activation of Human Eosinophils.” PLOS ONE, vol. 14, no. 9, 2019, doi:10.1371/journal.pone.0217807.

Chacon, Nathalie, et al. “Implications of Helminth Immunomodulation on Covid-19 Co-Infections.” Life Research, vol. 4, no. 3, 2021, p. 27., doi:10.53388/life2021-0502-309.

Li, Xiaochen, et al. “Interleukin-33, a Potential Cytokine Expressed in the Tumor Microenvironment Is Involved in Antitumor Immunotherapy through Facilitating CD8+ T Cells.” Journal of Interferon & Cytokine Research, vol. 38, no. 11, 2018, pp. 491–499., doi:10.1089/jir.2018.0069.

Murakami, Shokei, et al. “An Epidermal Keratinocyte Homogenate Induced Type 2 and Proinflammatory Cytokine Expression in Cultured Dermal Cells.” Journal of Dermatological Science, 2022, doi:10.1016/j.jdermsci.2022.04.002.

Okragly, Angela J, et al. “Generation and Characterization of Torudokimab (LY3375880): A Monoclonal Antibody That Neutralizes Interleukin-33.” Journal of Inflammation Research, Volume 14, 2021, pp. 3823–3835., doi:10.2147/jir.s320287.

Detecting p62 in selective autophagy research

Lamark, Trond, et al. “Regulation of Selective Autophagy: the p62/SQSTM1 Paradigm.” Essays In Biochemistry, vol. 61, no. 6, 2017, pp. 609–624., doi:10.1042/ebc20170035.

Liu, Wei Jing, et al. “p62 Links the Autophagy Pathway and the Ubiqutin–Proteasome System upon Ubiquitinated Protein Degradation.” Cellular & Molecular Biology Letters, vol. 21, no. 1, 2016, doi:10.1186/s11658-016-0031-z.

Komatsu, Masaaki, and Yoshinobu Ichimura. “Physiological Significance of Selective Degradation of p62 by Autophagy.” FEBS Letters, vol. 584, no. 7, 2010, pp. 1374–1378., doi:10.1016/j.febslet.2010.02.017.  

Epitope tagging: An essential tool for protein detection and purification

Ikeuchi, E., Kuroda, D., Nakakido, M. et al. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain VHH antibodies. Sci Rep 11, 20624 (2021). doi.org/10.1038/s41598-021-98977-8

Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). doi.org/10.1038/s41420-021-00566-1

Shimizu, N., Asatsuma-Okumura, T., Yamamoto, J. et al. PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Commun Biol 4, 1277 (2021). doi.org/10.1038/s42003-021-02801-y

Nikolov, V.N., Malavia, D. & Kubota, T. SWI/SNF and the histone chaperone Rtt106 drive expression of the Pleiotropic Drug Resistance network genes. Nat Commun 13, 1968 (2022). doi.org/10.1038/s41467-022-29591-z

Smart-IP: Smarter way for protein immunoprecipitation

Hirano, Seishiro, and Osamu Udagawa. “Effects of Arsenic on the Topology and Solubility of Promyelocytic Leukemia (PML)-Nuclear Bodies.” PLOS ONE, vol. 17, no. 5, 2022, doi:10.1371/journal.pone.0268835.

Hu, Yaling, et al. “Oncogenic Activity of Glucocorticoid Receptor β Is Controlled by Ubiquitination-Dependent Interaction with USP49 in Glioblastoma Cells.” Molecular Cancer Research, vol. 20, no. 1, 2022, pp. 92–101., doi:10.1158/1541-7786.mcr-20-1068.

Ogawa, Hirohito, et al. “Nectin-2 Acts as a Viral Entry Mediated Molecule That Binds to Human Herpesvirus 6B Glycoprotein B.” Viruses, vol. 14, no. 1, 2022, p. 160., doi:10.3390/v14010160.

amura, Takashi, et al. “Chemical Synthesis and Cell-Free Expression of Thiazoline Ring-Bridged Cyclic Peptides and Their Properties on Biomembrane Permeability.” Bulletin of the Chemical Society of Japan, vol. 95, no. 2, 2022, pp. 359–366., doi:10.1246/bcsj.20210409.

Yuan, Hong-feng, et al. “PRMT5 Confers Lipid Metabolism Reprogramming, Tumour Growth and Metastasis Depending on the SIRT7-Mediated Desuccinylation of PRMT5 K387 in Tumours.” Acta Pharmacologica Sinica, 2022, doi:10.1038/s41401-021-00841-y.

Spotlight on Anti-Inosine pAb

Nivedita Dutta, Indrajit et al., (2022) Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. Progress in Biophysics and Molecular Biology 169-170, 21-52.

Nishikura, K., Nat. Rev. Mol. Cell Biol. 17, 83-96 (2016)

Nigita, G., et al., Front. Bioeng. Biotechonol. 3, 37 (2015)

Acetylcholinesterase: an essential element of central and peripheral nervous systems

Nili, Ali, et al. “Current status and prospects for the diagnosis of pemphigus vulgaris. Expert Rev Clin Immunol. (2021) 17.8: 819-834. doi.org/10.1080/1744666x.2021.1945925

Rodrigues, João Vitor Ferreira, et al. A single dose of the organophosphate triazophos induces fear extinction deficits accompanied by hippocampal acetylcholinesterase inhibition.Neurotoxicol Teratol. (2020) 82: 106929. doi.org/10.1016/j.ntt.2020.106929

14-3-3 Proteins Key Indicators of Neurological Damage

Satoh, K, Nakamura, T. Human prion disease. Clin Exp Neuroimmunol. (2022) 13: 24– 33. doi:1111/cen3.12683

Matthias Schmitz, Anna Villar-Piqué. et al. Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain. (2022) 145:2:700–712.10. doi:1093/brain/awab35.

Guasp M, Muñoz-Sánchez G et al. Neuro-COVID Study Group. CSF Biomarkers in COVID-19 Associated Encephalopathy and Encephalitis Predict Long-Term Outcome. Front Immunol. (2022) 13 866153. doi:0.3389/fimmu.2022.866153.

Falgàs, N, Ruiz-Peris, M, Pérez-Millan, A, et al. Contribution of CSF biomarkers to early-onset Alzheimer’s disease and frontotemporal dementia neuroimaging signatures. Hum Brain Mapp. (2020) 41: 2004– 2013. doi:10.1002/hbm.24925

bu-Rumeileh, S., Baiardi, S., Polischi, B. et al. Diagnostic value of surrogate CSF biomarkers for Creutzfeldt–Jakob disease in the era of RT-QuIC. J Neurol. (2019) 266: 3110. doi:1007/s00415-019-095370

Humpel C, Benke T: Cerebrospinal Fluid Levels of 14-3-3 Gamma: What Does It Tell Us About Sporadic Creutzfeldt-Jakob Disease? Pharmacology (2017) 100:243-245. doi:1159/000479115

MHC Tetramer and CAR-T

Ellis, Gavin I., et al. “Trafficking and Persistence of Alloantigen-Specific Chimeric Antigen Receptor Regulatory T Cells in Cynomolgus Macaque.” Cell Reports Medicine, vol. 3, no. 5, 2022, p. 100614., doi:10.1016/j.xcrm.2022.100614.

Gottlieb, David J., et al. “Combining cd34 + Stem Cell Selection with Prophylactic Pathogen and Leukemia Directed T‐Cell Immunotherapy to Simultaneously Reduce Graft versus Host Disease, Infection, and Leukemia Recurrence after Allogeneic Stem Cell Transplant.” American Journal of Hematology, 2022, doi:10.1002/ajh.26594.

Ochi, Toshiki, et al. “A Single-Chain Antibody Generation System Yielding Car-T Cells with Superior Antitumor Function.” Communications Biology, vol. 4, no. 1, 2021, doi:10.1038/s42003-021-01791-1.

Otano, Itziar, et al. “Abstract 1691: CD137 (4-1BB) Costimulation of CD8 T Cells Is More Potent When Provided in CIS than in Trans with Respect to CD3-TCR Stimulation.” Cancer Research, vol. 81, no. 13_Supplement, 2021, pp. 1691–1691., doi:10.1158/1538-7445.am2021-1691.

Wei, Teng, et al. “Generation of Neoantigen-Specific T Cells for Adoptive Cell Transfer for Treating Head and Neck Squamous Cell Carcinoma.” OncoImmunology, vol. 10, no. 1, 2021, doi:10.1080/2162402x.2021.1929726.

Zhang, Li, et al. “Lenalidomide Improves the Antitumor Activity of CAR-T Cells Directed toward the Intracellular Wilms Tumor 1 Antigen.” Hematology, vol. 26, no. 1, 2021, pp. 818–826., doi:10.1080/16078454.2021.1981534.

Zhang, Xuqing, et al. “Engineered Red Blood Cells as an off-the-Shelf Allogeneic Anti-Tumor Therapeutic.” Nature Communications, vol. 12, no. 1, 2021, doi:10.1038/s41467-021-22898-3.

Publications by product

311 Anti-GST-P (Rat) pAb (Polyclonal Antibody) Long, K.L.P., Chao, L.L., Kazama, Y. et al. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Transl Psychiatry 11, 631 (2021). https://doi.org/10.1038/s41398-021-01745-5
312 Anti-GST-pi (Human) pAb (Polyclonal Antibody) Sánchez-de la Torre, A., Aguado, T., Huerga-Gómez, A. et al. Cannabinoid CB1 receptor gene inactivation in oligodendrocyte precursors disrupts oligodendrogenesis and myelination in mice. Cell Death Dis 13, 585 (2022). https://doi.org/10.1038/s41419-022-05032-z
551 Anti-Go α (GTP binding protein Go α subunit) (Bovine) pAb (Polyclonal Antibody) Osakada, T., Abe, T., Itakura, T. et al. Hemoglobin in the blood acts as a chemosensory signal via the mouse vomeronasal system. Nat Commun 13, 556 (2022). https://doi.org/10.1038/s41467-022-28118-w
561 Anti-HA-tag pAb (Polyclonal Antibody) Bizen, N., Bepari, A.K., Zhou, L. et al. Ddx20, an Olig2 binding factor, governs the survival of neural and oligodendrocyte progenitor cells via proper Mdm2 splicing and p53 suppression. Cell Death Differ (2022). https://doi.org/10.1038/s41418-021-00915-10
561 Anti-HA-tag pAb (Polyclonal Antibody) Nagamatsu, S., Nishito, Y., Yuasa, H. et al. Sophisticated expression responses of ZNT1 and MT in response to changes in the expression of ZIPs. Sci Rep 12, 7334 (2022). https://doi.org/10.1038/s41598-022-10925-2
561 Anti-HA-tag pAb (Polyclonal Antibody) Kato, T., Kusakizako, T., Jin, C. et al. Structural insights into inhibitory mechanism of human excitatory amino acid transporter EAAT2. Nat Commun 13, 4714 (2022). https://doi.org/10.1038/s41467-022-32442-6
562 Anti-Myc-tag pAb (Polyclonal Antibody) Nomura, T., Nagao, K., Shirai, R. et al. Temperature sensitivity of Notch signaling underlies species-specific developmental plasticity and robustness in amniote brains. Nat Commun 13, 96 (2022). https://doi.org/10.1038/s41467-021-27707-5
562 Anti-Myc-tag pAb (Polyclonal Antibody) Zhang, G., Xu, Y., Wang, X. et al. Dynamic FMR1 granule phase switch instructed by m6A modification contributes to maternal RNA decay. Nat Commun 13, 859 (2022). https://doi.org/10.1038/s41467-022-28547-7
562 Anti-Myc-tag pAb (Polyclonal Antibody) Gu, H., Yang, J., Zhang, J. et al. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Nat Commun 13, 1564 (2022). https://doi.org/10.1038/s41467-022-29266-11
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Satoh, K., Takemura, Y., Satoh, M. et al. Loss of FYCO1 leads to cataract formation. Sci Rep 11, 13771 (2021). https://doi.org/10.1038/s41598-021-93110-1
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Saitoh, Y., Mitani-Ueno, N., Saito, K. et al. Structural basis for high selectivity of a rice silicon channel Lsi1. Nat Commun 12, 6236 (2021). https://doi.org/10.1038/s41467-021-26535-x
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Zheng, P., Obara, C.J., Szczesna, E. et al. ER proteins decipher the tubulin code to regulate organelle distribution. Nature (2021). https://doi.org/10.1038/s41586-021-04204-9
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Bizen, N., Bepari, A.K., Zhou, L. et al. Ddx20, an Olig2 binding factor, governs the survival of neural and oligodendrocyte progenitor cells via proper Mdm2 splicing and p53 suppression. Cell Death Differ (2022). https://doi.org/10.1038/s41418-021-00915-8
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Date, Y., Matsuura, A. & Itakura, E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Discov. 8, 37 (2022). https://doi.org/10.1038/s41420-022-00828-9
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Rozales, K., Younis, A., Saida, N. et al. Differential roles for DNAJ isoforms in HTT-polyQ and FUS aggregation modulation revealed by chaperone screens. Nat Commun 13, 516 (2022). https://doi.org/10.1038/s41467-022-27982-w
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Gao, Z., Zhang, D., Wang, X. et al. Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants. Nat Commun 13, 716 (2022). https://doi.org/10.1038/s41467-022-28395-5
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Takenoshita, Y., Hara, M. & Fukagawa, T. Recruitment of two Ndc80 complexes via the CENP-T pathway is sufficient for kinetochore functions. Nat Commun 13, 851 (2022). https://doi.org/10.1038/s41467-022-28403-8
598 Anti-GFP (Green Fluorescent Protein) pAb (Polyclonal Antibody) Mo, W., Zhang, J., Zhang, L. et al. Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock. Nat Commun 13, 2631 (2022). https://doi.org/10.1038/s41467-022-30231-9
598 Anti-GFP (Green Fluorescent Protein) pAb Hatayama, M., Katayama, Ki., Kawahara, Y. et al. SLITRK1-mediated noradrenergic projection suppression in the neonatal prefrontal cortex. Commun Biol 5, 935 (2022). https://doi.org/10.1038/s42003-022-03891-y
3320 HA tagged Protein PURIFICATION KIT Lim, EJ., Kang, JH., Kim, YJ. et al. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer. Cell Death Dis 13, 417 (2022). https://doi.org/10.1038/s41419-022-04862-
4700 MEBCYTO Apoptosis Kit (Annexin V-FITC Kit) Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
4700 MEBCYTO Apoptosis Kit (Annexin V-FITC Kit) Owari, T., Tanaka, N., Nakai, Y. et al. 5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells. Br J Cancer (2022). https://doi.org/10.1038/s41416-022-01789-4
4700 MEBCYTO® Apoptosis Kit  Matsuo, M., Ueno, T., Monde, K. et al. Identification and characterization of a novel enhancer in the HTLV-1 proviral genome. Nat Commun 13, 2405 (2022). https://doi.org/10.1038/s41467-022-30029-9
7620 Human IL-18 ELISA Kit Niu, T., De Rosny, C., Chautard, S. et al. NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat Commun 12, 5862 (2021).
https://www.nature.com/articles/s41467-021-26142-w#Sec12
7620 Human IL-18 ELISA Kit Kanazawa, N., Hemmi, H., Kinjo, N. et al. Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nat Commun 12, 6819 (2021). https://doi.org/10.1038/s41467-021-27085-y
7620 Human IL-18 ELISA Kit Xu, Z., Wang, H., Qin, Z. et al. NLRP3 inflammasome promoted the malignant progression of prostate cancer via the activation of caspase-1. Cell Death Discov. 7, 399 (2021). https://doi.org/10.1038/s41420-021-00766-9
7620 Human IL-18 ELISA Kit  Gibbs S et al. Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay. Toxicology 393, 62-72 (2018)(PMID:29079364)
7620 Human IL-18 ELISA Kit  Kadowaki T et al. Haploinsufficiency of A20 causes autoinflammatory and autoimmune disorders. J Allergy Clin Immunol. 141, 1485-1488.e11. (2018)(PMID:29241730)
7620 Human IL-18 ELISA Kit  Hachiya A et al. Analysis of biomarker serum levels in IVIG and infliximab refractory Kawasaki disease patients. Clin Rheumatol. (2018)(PMID:29302828)
7620 Human IL-18 ELISA Kit  Penczynski KJ et al. Flavonoid intake from fruit and vegetables during adolescence is prospectively associated with a favourable risk factor profile for type 2 diabetes in early adulthood. Eur J Nutr. (2018) In press.(PMID:29468461)
7620 Human IL-18 ELISA Kit  Herder C et al. Association between pro- and anti-inflammatory cytokines and depressive symptoms in patients with diabetes-potential differences by diabetes type and depression scores. Transl Psychiatry 7, 1 (2018)(PMID:29520075)
7620 Human IL-18 ELISA Kit  Strączkowski M et al. The effect of moderate weight loss, with or without (1, 3)(1, 6)-β-glucan addition, on subcutaneous adipose tissue inflammatory gene expression in young subjects with uncomplicated obesity. Endocrine 61, 275-284 (2018)(PMID:29737494)
7620 Human IL-18 ELISA Kit  Flisiak-Jackiewicz M et al. Predictive Role of Interleukin-18 in Liver Steatosis in Obese Children. Can J Gastroenterol Hepatol. 2018, 3870454 (2018)(PMID:29854715)
7620 Human IL-18 ELISA Kit  Pietrzak D et al. Serum concentrations of interleukin 18 and 25-hydroxyvitamin D3 correlate with depression severity in men with psoriasis. PLoS One 13, e0201589 (2018)(PMID:30092066)
7620 Human IL-18 ELISA Kit  Bil W et al. Comparison of the skin sensitization potential of 3 red and 2 black tattoo inks using interleukin-18 as a biomarker in a reconstructed human skin model. Contact Dermatitis. 79, 336-345 (2018)(PMID:30136287)
7620 Human IL-18 ELISA Kit  Furuya MY et al. Tofacitinib inhibits granulocyte-macrophage colony-stimulating factor-induced NLRP3 inflammasome activation in human neutrophils. Arthritis Res Ther. 20, 196 (2018)(PMID:30157949)
7620 Human IL-18 ELISA Kit  Colasanti T et al. Diesel exhaust particles induce autophagy and citrullination in Normal Human Bronchial Epithelial cells. Cell Death Dis. 9, 1073 (2018)(PMID:30341285)
7620 Human IL-18 ELISA Kit  Semino C et al. Progressive waves of IL-1β release by primary human monocytes via sequential activation of vesicular and gasdermin D-mediated secretory pathways. Cell Death Dis. 9, 1088 (2018)(PMID:30352992)
7620 Human IL-18 ELISA Kit  Zaidi H et al. Effects of exercise training on inflammasome-related mediators and their associations to glucometabolic variables in patients with combined coronary artery disease and type 2 diabetes mellitus: Sub-study of a randomized control trial. Diab Vasc Dis Res. 16, 360-368 (PMID:30939905)
7620 Human IL-18 ELISA Kit  Tsuneto PY et al. IL18 Polymorphism and Periodontitis Susceptibility, Regardless of IL12B, MMP9, and Smoking Habits. Mediators Inflamm. 2019:9585964 (2019) (PMID:31065235)
7620 Human IL-18 ELISA Kit  Leu WJ et al. Extract From Plectranthus amboinicus Inhibit Maturation and Release of Interleukin 1β Through Inhibition of NF-κB Nuclear Translocation and NLRP3 Inflammasome Activation. Front Pharmacol. 10, 573 (2019)(PMID:31191313)
7620 Human IL-18 ELISA Kit  Matsuyama H et al. Activation of mucosal-associated invariant T cells in the lungs of sarcoidosis patients. Sci Rep. 9, 13181 (2019)(PMID:31515495)
7620 Human IL-18 ELISA Kit  Kim HS et al. Level of interleukin-18 Binding Protein Is Significantly Different in Patients With Anaphylaxis Than Urticaria. Asian Pac J Allergy Immunol. in press (PMID:31837215)
7620 Human IL-18 ELISA Kit  Fatyga P et al. The relationship between malnutrition risk and inflammatory biomarkers in outpatient geriatric population. Eur Geriatr Med. 11, 383-391 (2020)(PMID:32297262)
7620 Human IL-18 ELISA Kit  Maida CD et al. Inflammatory activation and endothelial dysfunction markers in patients with permanent atrial fibrillation: a cross-sectional study. Aging (Albany NY). 12, 8423-8433 (2020)(PMID:32364529)
7620 Human IL-18 ELISA Kit  Morimoto C et al. High serum free IL-18 is associated with decreased omalizumab efficacy: findings from a 2-year omalizumab treatment study. J Asthma. 1-10 (2020)(PMID:32375555)
7620 Human IL-18 ELISA Kit  Felmerer G et al. Adipose Tissue Hypertrophy, An Aberrant Biochemical Profile and Distinct Gene Expression in Lipedema. J Surg Res. 253, 294-303 (2020)(PMID:32407981)
7620 Human IL-18 ELISA Kit  McLeod DJ et al. Longitudinal kidney injury biomarker trajectories in children with obstructive uropathy. Pediatr Nephrol. 35, 1907-1914 (2020)(PMID:32444926)
7620 Human IL-18 ELISA Kit  Nishimura K et al. Efficacy and safety of canakinumab in systemic juvenile idiopathic arthritis: 48-week results from an open-label phase Ⅲ study in Japanese patients. Mod Rheumatol.in press(PMID:32552266)
7620 Human IL-18 ELISA Kit  Shang L et al. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermatitis. 83, 347-360 (2020)(PMID:32677222)
7620 Human IL-18 ELISA Kit  Yamada K et al. Lamivudine Inhibits Alu RNA-induced Retinal Pigment Epithelium Degeneration via Anti-inflammatory and Anti-senescence Activities. Transl Vis Sci Technol. 9, 1 (2020)(PMID:32855848)
7620 Human IL-18 ELISA Kit  Krei JM et al. The role of interleukin-18 in the diagnosis and monitoring of hemophagocytic lymphohistiocytosis/macrophage activation syndrome – a systematic review. Clin Exp Immunol. 203, 174-182 (2020)(PMID:33128796)
7620 Human IL-18 ELISA Kit  Wakiguchi H et al. Acute rheumatic fever associated with tenosynovitis and a unique cytokine profile. Immunol Med. 41, 43-45 (2018)(PMID:30938255)
7620 Human IL-18 ELISA Kit  Martínez-García JJ et al. P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis. Nat Commun. 10, 2711 (2019)(PMID:31221993)
7620 Human IL-18 ELISA Kit  Limandjaja GC et al. Reconstructed human keloid models show heterogeneity within keloid scars. Arch Dermatol Res. 310 815-826 (2018)(PMID:30370495)
7625 Mouse IL-18 ELISA Kit  de la Roche M et al. Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation. J Cell Biol. 217, 3560-3576 (2018)(PMID:30054450)
7625 Mouse IL-18 ELISA Kit  da Costa LS et al. RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux. Cell Death Dis. 10, 346 (2019)(PMID:31024004)
7625 Mouse IL-18 ELISA Kit  Abdel-Nour M et al. The heme-regulated inhibitor is a cytosolic sensor of protein misfolding that controls innate immune signaling. Science. 365, pii: eaaw4144 (2019)(PMID:31273097)
7625 Mouse IL-18 ELISA Kit  Quach C et al. A Truncating Mutation in the Autophagy Gene UVRAG Drives Inflammation and Tumorigenesis in Mice. Nat Commun. 10, 5681 (2019) (PMID:31831743)
7625 Mouse IL-18 ELISA Kit  Sundberg JP et al. Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS One. 15, e0235295 (2020)(PMID:32687504)
7625 Mouse IL-18 ELISA Kit  Yamada K et al. Lamivudine Inhibits Alu RNA-induced Retinal Pigment Epithelium Degeneration via Anti-inflammatory and Anti-senescence Activities. Transl Vis Sci Technol. 9, 1 (2020)(PMID:32855848)
7625 Mouse IL-18 ELISA Kit  Chakravarti D et al. Telomere dysfunction activates YAP1 to drive tissue inflammation.Nat Commun. 11, 4766 (2020) (PMID:32958778)
7625 Mouse IL-18 ELISA Kit  Ohkusu-Tsukada K et al. Signs of atopic dermatitis and contact dermatitis affected by distinct H2-haplotype in the NC/Nga genetic background. Sci Rep. 8, 2586 (2018)(PMID:29416104)
7625 Mouse IL-18 ELISA Kit  Wang J et al. Caspase-11-dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18. PLoS Pathog. 14, e1007105 (2018)(PMID:29791511)
7625 Mouse IL-18 ELISA Kit  Funayama H et al. Effects of Zoledronate on Local and Systemic Production of IL-1β, IL-18, and TNF-α in Mice and Augmentation by Lipopolysaccharide. Biol Pharm Bull. 42 929-936 (2019)(PMID:31155589)
7625 Mouse IL-18 ELISA Kit  Fang R <em>et al. ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism. Mucosal Immunol. 12, 1092-1103 (2019)(PMID:31278375)
7625 Mouse IL-18 ELISA Kit  Tan S et al. H2 Protects Against Lipopolysaccharide-Induced Cardiac Dysfunction via Blocking TLR4-Mediated Cytokines Expression. Front Pharmacol. 10, 865 (2019)(PMID:31440160)
7625 Mouse IL-18 ELISA Kit  Sakaguchi N et al. Role of Gate-16 and Gabarap in Prevention of Caspase-11-Dependent Excess Inflammation and Lethal Endotoxic Shock. Front Immunol. 11, 561948 (2020) (PMID:33042141)
7625 Mouse IL-18 ELISA Kit  Tourlomousis P et al. Modifying bacterial flagellin to evade Nod-like Receptor CARD 4 recognition enhances protective immunity against Salmonella. Nat Microbiol. 5, 1588-1597 (2020)(PMID:33106673)
7625 Mouse IL-18 ELISA Kit  Li X et al. IL-18 binding protein (IL-18BP) as a novel radiation countermeasure after radiation exposure in mice. Sci Rep. 10, 18674 (2020)(PMID:33122671)
8445 MEBSTAIN Apoptosis TUNEL Kit Direct Koizumi, M., Watanabe, T., Masumoto, J. et al. Apoptosis-associated speck-like protein containing a CARD regulates the growth of pancreatic ductal adenocarcinoma. Sci Rep 11, 22351 (2021). https://doi.org/10.1038/s41598-021-01465-2
8460 Histostar(Ms + Rb) (for Human tissue Yasuda, T., Lee, H.S., Nam, S.Y. et al. Non-Helicobacter pylori Helicobacter (NHPH) positive gastric cancer. Sci Rep 12, 4811 (2022). https://doi.org/10.1038/s41598-022-08962-y
 4800-520 Caspase inhibitor Z-VAD-FMK Akao, Y., Terazawa, R., Sugito, N. et al. Understanding of cell death induced by the constituents of Taxus yunnanensis wood. Sci Rep 12, 6282 (2022). https://doi.org/10.1038/s41598-022-09655-2
 562 Anti-Myc-tag pAb (Polyclonal Antibody) Prakash, H., Sato, M., Kojima, K. et al. Development of a filter device for the prevention of aquatic bacterial disease using a single-chain variable fragment (scFv)-conjugated affinity silk. Sci Rep 12, 9475 (2022). https://doi.org/10.1038/s41598-022-13408-6
 D087-5 Anti-GPI-80 (Human) mAb-PE (Monoclonal Antibody) Vanuytsel, K., Villacorta-Martin, C., Lindstrom-Vautrin, J. et al. Multi-modal profiling of human fetal liver hematopoietic stem cells reveals the molecular signature of engraftment. Nat Commun 13, 1103 (2022). https://doi.org/10.1038/s41467-022-28616-x
 M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Kaushal, K., Kim, EJ., Tyagi, A. et al. Genome-wide screening for deubiquitinase subfamily identifies ubiquitin-specific protease 49 as a novel regulator of odontogenesis. Cell Death Differ (2022). https://doi.org/10.1038/s41418-022-00956-7
 M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Zhao, Y., Huang, F., Zou, Z. et al. Avian influenza viruses suppress innate immunity by inducing trans-transcriptional readthrough via SSU72. Cell Mol Immunol (2022). https://doi.org/10.1038/s41423-022-00843-8
 M185-7 Anti-DDDDK-tag mAb-HRP-DirecT (Monoclonal Antibody) Zhang, Z., Nomura, N., Muramoto, Y. et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun 13, 4399 (2022). https://doi.org/10.1038/s41467-022-32019-3
  iTAg Tetramer/PE-H-2 Kb OVA (SIINFEKL), Grzywa, T.M., Sosnowska, A., Rydzynska, Z. et al. Potent but transient immunosuppression of T-cells is a general feature of CD71+ erythroid cells. Commun Biol 4, 1384 (2021). https://doi.org/10.1038/s42003-021-02914-4
   RIP kit Li, X., Wang, W., Shao, Y. et al. LncTRPM2-AS inhibits TRIM21-mediated TRPM2 ubiquitination and prevents autophagy-induced apoptosis of macrophages in asthma. Cell Death Dis 12, 1153 (2021). https://doi.org/10.1038/s41419-021-04437-6
    Chung, WP., Huang, WL., Liao, WA. et al. FTY720 in resistant human epidermal growth factor receptor 2-positive breast cancer. Sci Rep 12, 241 (2022). https://doi.org/10.1038/s41598-021-04328-y
    Park, K., Lim, H., Kim, J. et al. Lysosomal Ca2+-mediated TFEB activation modulates mitophagy and functional adaptation of pancreatic β-cells to metabolic stress. Nat Commun 13, 1300 (2022). https://doi.org/10.1038/s41467-022-28874-9
    Liu, C., Liu, X., Xiang, X. et al. A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. (2022). https://doi.org/10.1038/s41565-022-01098-0
    Mizukoshi, E., Nakagawa, H., Tamai, T. et al. Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells. Nat Commun 13, 3123 (2022). https://doi.org/10.1038/s41467-022-30861-z
    Sen Chaudhuri, A., Yeh, YW., Zewdie, O. et al. S100A4 exerts robust mucosal adjuvant activity for co-administered antigens in mice. Mucosal Immunol (2022). https://doi.org/10.1038/s41385-022-00535-6
    Sun, Y., Yan, L., Sun, J. et al. Nanoscale organization of two-dimensional multimeric pMHC reagents with DNA origami for CD8+ T cell detection. Nat Commun 13, 3916 (2022). https://doi.org/10.1038/s41467-022-31684-8
    Nakano, H., Inoue, S., Minegishi, Y. et al. Effect of hyperhomocysteinemia on a murine model of smoke-induced pulmonary emphysema. Sci Rep 12, 12968 (2022). https://doi.org/10.1038/s41598-022-16767-2
    Li, Y., Watanabe, E., Kawashima, Y. et al. Identification of trypsin-degrading commensals in the large intestine. Nature 609, 582–589 (2022). https://doi.org/10.1038/s41586-022-05181-3
1B6 D266-3? Anti-Mincle (Mouse) mAb (Monoclonal Antibody) Zhang, Q., Liu, W., Wang, H. et al. TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nat Commun 13, 2406 (2022). https://doi.org/10.1038/s41467-022-30174-1
3343R DDDDK-tagged Protein Magnetic Purification Kit Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
4695-100 Annexin V-Biotin (Reagent) Tian, Y., Denda-Nagai, K., Tsukui, T. et al. Mucin 21 confers resistance to apoptosis in an O-glycosylation-dependent manner. Cell Death Discov. 8, 194 (2022). https://doi.org/10.1038/s41420-022-01006-4
4810-510 Caspase-9 inhibitor Z-LEHD-FMK Akao, Y., Terazawa, R., Sugito, N. et al. Understanding of cell death induced by the constituents of Taxus yunnanensis wood. Sci Rep 12, 6282 (2022). https://doi.org/10.1038/s41598-022-09655-3
562 or 562-5 Anti-Myc-tag pAb (Polyclonal Antibody) Yamashita, R., Fujii, S., Ushioda, R. et al. Ca2+ imbalance caused by ERdj5 deletion affects mitochondrial fragmentation. Sci Rep 11, 20772 (2021). https://doi.org/10.1038/s41598-021-99980-9
AM-8011M Fluoppi: Ash-hAG (Ash-MNL/MCL + hAG-MNL/MCL) Koyano F et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature (2014)
AM-8011M Fluoppi Ver.2 : Ash-hAG (Ash-MNL/MCL + hAG-MNL/MCL) Koyano F et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 510, 162-6 (2014)
AM-8011M Fluoppi Ver.2 : Ash-hAG (Ash-MNL/MCL + hAG-MNL/MCL) Yamano K et al. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J Biol Chem. 290, 25199-211 (2015)
AM-8011M Fluoppi Ver.2 : Ash-hAG (Ash-MNL/MCL + hAG-MNL/MCL) Asamitsu K et al. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis. Genes Cells. 21, 706-16 (2016)
AM-8012M Fluoppi Ver.2 : Ash-Red (Ash-MNL/MCL + Monti-Red-MNL/MCL) Koyano F et al. Ubiqutitin is phosphorylated by PINK1 to activate perkin. Nature. 510, 162-6 (2014)
AM-8012M Fluoppi Ver.2 : Ash-Red (Ash-MNL/MCL + Monti-Red-MNL/MCL) Yamano K et al. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J Biol Chem. 290, 25199-211 (2015)
AM-8012M Fluoppi Ver.2 : Ash-Red (Ash-MNL/MCL + Monti-Red-MNL/MCL) Asamitsu K et al. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis. Genes Cells. 21, 706-16 (2016)
AM-8201M Fluoppi : Ash-hAG [p53-MDM2] Koyano F et al. Ubiqutitin is phosphorylated by PINK1 to activate perkin. Nature. 510, 162-6 (2014)
AM-8201M Fluoppi : Ash-hAG [p53-MDM2] Yamano K et al. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J Biol Chem. 290, 25199-211 (2015)
AM-8201M Fluoppi : Ash-hAG [p53-MDM2] Asamitsu K et al. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis. Genes Cells. 21, 706-16 (2016)
AM-8202M Fluoppi : Ash-hAG [mTOR-FKBP12] Koyano F et al. Ubiqutitin is phosphorylated by PINK1 to activate perkin. Nature. 510, 162-6 (2014)
AM-8202M Fluoppi : Ash-hAG [mTOR-FKBP12] Yamano K et al. Site-specific Interaction Mapping of Phosphorylated Ubiquitin to Uncover Parkin Activation. J Biol Chem. 290, 25199-211 (2015)
AM-8202M Fluoppi : Ash-hAG [mTOR-FKBP12] Asamitsu K et al. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis. Genes Cells. 21, 706-16 (2016)
AM-V0050M CoralHue humanized monomeric Kusabira-Orange 1 (phmKO1-MNL) Watanabe-Nakayama T <i>et al.</i> Requirement of LIM domains for the transient accumulation of paxillin at damaged stress fibres. Biol Open. 2: 667-74. 2013
AM-V0059M CoralHue humanized monomeric Kusabira-Orange 1 (phmKO1-MCL) Watanabe-Nakayama T <i>et al.</i> Requirement of LIM domains for the transient accumulation of paxillin at damaged stress fibres. Biol Open. 2: 667-74. 2013
AM-V0251 PRODUCT NOT FOUND Choi, G.E., Lee, H.J., Chae, C.W. et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun 12, 487 (2021). https://doi.org/10.1038/s41467-020-20679-y
AM-V0251M CoralHue Mitochondria-targeted monomeric Keima-Red (pMT-mKeima-Red) Bingol, B., et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014).
AM-V0251M CoralHue Mitochondria-targeted monomeric Keima-Red (pMT-mKeima-Red) Hirota Y et al. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy. 11, 332&ndash;343 (2015)
AM-V0251M CoralHue Mitochondria-targeted monomeric Keima-Red (pMT-mKeima-Red) Yamashita SI et al. Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol. 215, 649-665 (2016)
AM-V0251M CoralHue Mitochondria-targeted monomeric Keima-Red (pMT-mKeima-Red) Suzuki, S., et al. Efficient induction of dopaminergic neuron differentiation from induced pluripotent stem cells reveals impaired mitophagy in PARK2 neurons.
AM-V0259M pMitophagy Keima-Red mPark2 (Kan) Choi, G.E., Lee, H.J., Chae, C.W. et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun 12, 487 (2021). https://doi.org/10.1038/s41467-020-20679-y
AM-V0259M pMitophagy Keima-Red mPark2 (Kan) Cortés Sanchón, A., Santhosh Kumar, H., Mantovani, M. et al. ER-misfolded proteins become sequestered with mitochondria and impair mitochondrial function. Commun Biol 4, 1350 (2021). https://doi.org/10.1038/s42003-021-02873-w
AM-V9003M pFucci-G1 Orange (Expression vector) Pauklin S et al. The cell-cycle state of stem cells determines cell fate propensity. Cell. 155, 135-47 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Sugiyama M et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci USA. 106, 20812-7 (2009)
AM-V9003M pFucci-G1 Orange (Expression vector) Coronado D et al. A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res. 10, 118-31 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Singh AM et al. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports. 1, 532-44 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Roccio M et al. Predicting stem cell fate changes by differential cell cycle progression patterns. Development. 140, 459-70 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Ogura Y et al. Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development. 138, 577-87 (2011)
AM-V9003M pFucci-G1 Orange (Expression vector) Abe T et al. Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Development. 140, 237-46 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Laurent J et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 8, 13-73 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Morikawa H et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem Biophys Res Commun. 401, 268-74 (2010)
AM-V9003M pFucci-G1 Orange (Expression vector) Bao Y et al. Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo. Mol Cancer Res. 11, 973-85 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Tomura M et al. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS One. 8, e73801 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Dowling MR et al. Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA. 111, 6377-82 (2014)
AM-V9003M pFucci-G1 Orange (Expression vector) Yang L et al. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol. 85, 3001-9 (2011)
AM-V9003M pFucci-G1 Orange (Expression vector) Dan S et al. ZSTK474, a specific phosphatidylinositol 3-kinase inhibitor, induces G1 arrest of the cell cycle in vivo. Eur J Cancer. 48, 936-43 (2012)
AM-V9003M pFucci-G1 Orange (Expression vector) Bouchard G et al. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer. 109, 1829-38 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Sakaue-Sawano A et al. Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development. 140, 4624-32 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Downey MJ et al. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution. PLoS One. 6, e27886 (2011)
AM-V9003M pFucci-G1 Orange (Expression vector) Kaida A et al. Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 318, 288-97 (2012)
AM-V9003M pFucci-G1 Orange (Expression vector) Tofighi R et al. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol Sci. 124, 192-201 (2011)
AM-V9003M pFucci-G1 Orange (Expression vector) Ito S et al. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One. 7, e36372 (2012)
AM-V9003M pFucci-G1 Orange (Expression vector) Newman RH et al. Fucci: street lights on the road to mitosis. Chem Biol. 15, 97-8 (2008)
AM-V9003M pFucci-G1 Orange (Expression vector) Kaida A et al. Differential dependence on oxygen tension during the maturation process between monomeric Kusabira Orange 2 and monomeric Azami Green expressed in HeLa cells. Biochem Biophys Res Commun. 421, 855-9 (2012)
AM-V9003M pFucci-G1 Orange (Expression vector) Ridenour DA et al. CycleTrak: a novel system for the semi-automated analysis of cell cycle dynamics. Dev Biol. 365, 189-95 (2012)
AM-V9003M pFucci-G1 Orange (Expression vector) Hashimoto T et al. Preferential Fas-mediated apoptotic execution at G1 phase: the resistance of mitotic cells to the cell death. Cell Death Dis. 3, e313 (2012)
AM-V9003M pFucci-G1 Orange (Expression vector) Paladino P et al. Identification of herpesvirus proteins that contribute to G1/S arrest. J Virol. 88, 4480-92 (2014)
AM-V9003M pFucci-G1 Orange (Expression vector) Carlier G et al. Human fucci pancreatic Beta cell lines: new tools to study Beta cell cycle and terminal differentiation. PLoS One. 9, e108202 (2014)
AM-V9003M pFucci-G1 Orange (Expression vector) Malka Y et al. Analysis of apoptosis in FUCCI HeLa cells. Cytometry A. 79, 243-6 (2011)
AM-V9003M pFucci-G1 Orange (Expression vector) Nahar K et al. Effects of Chk1 inhibition on the temporal duration of radiation-induced G2 arrest in HeLa cells.<br />J Radiat Res. 55, 1021-7 (2014)
AM-V9003M pFucci-G1 Orange (Expression vector) Equilibrina I et al. ASURA (PHB2) interacts with Scc1 through chromatin. Cytogenet Genome Res. 139, 225-33 (2013)
AM-V9003M pFucci-G1 Orange (Expression vector) Nagano T et al. Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle. 12, 2617-24 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Pauklin S et al. The cell-cycle state of stem cells determines cell fate propensity. Cell. 155, 135-47 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Sugiyama M et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci USA. 106, 20812-7 (2009)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Coronado D et al. A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res. 10, 118-31 (2013)
AM-V9010M  pFucci-S/G2/M Green-Hyg (Expression vector) Singh AM et al. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports. 1, 532-44 (2013)
AM-V9010M  pFucci-S/G2/M Green-Hyg (Expression vector) Roccio M et al. Predicting stem cell fate changes by differential cell cycle progression patterns. Development. 140, 459-70 (2013)
AM-V9010M  pFucci-S/G2/M Green-Hyg (Expression vector) Ogura Y et al. Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development. 138, 577-87 (2011)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Abe T et al. Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Development. 140, 237-46 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Laurent J et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 8, 13-73 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Morikawa H et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem Biophys Res Commun. 401, 268-74 (2010)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Bao Y et al. Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo. Mol Cancer Res. 11, 973-85 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Tomura M et al. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS One. 8, e73801 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Dowling MR et al. Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA. 111, 6377-82 (2014)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Yang L et al. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol. 85, 3001-9 (2011)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Dan S et al. ZSTK474, a specific phosphatidylinositol 3-kinase inhibitor, induces G1 arrest of the cell cycle in vivo. Eur J Cancer. 48, 936-43 (2012)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Bouchard G et al. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer. 109, 1829-38 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Sakaue-Sawano A et al. Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development. 140, 4624-32 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Downey MJ et al. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution. PLoS One. 6, e27886 (2011)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Kaida A et al. Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 318, 288-97 (2012)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Tofighi R et al. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol Sci. 124, 192-201 (2011)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Ito S et al. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One. 7, e36372 (2012)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Newman RH et al. Fucci: street lights on the road to mitosis. Chem Biol. 15, 97-8 (2008)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Kaida A et al. Differential dependence on oxygen tension during the maturation process between monomeric Kusabira Orange 2 and monomeric Azami Green expressed in HeLa cells. Biochem Biophys Res Commun. 421, 855-9 (2012)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Ridenour DA et al. CycleTrak: a novel system for the semi-automated analysis of cell cycle dynamics. Dev Biol. 365, 189-95 (2012)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Hashimoto T et al. Preferential Fas-mediated apoptotic execution at G1 phase: the resistance of mitotic cells to the cell death. Cell Death Dis. 3, e313 (2012)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Paladino P et al. Identification of herpesvirus proteins that contribute to G1/S arrest. J Virol. 88, 4480-92 (2014)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Carlier G et al. Human fucci pancreatic Beta cell lines: new tools to study Beta cell cycle and terminal differentiation. PLoS One. 9, e108202 (2014)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Malka Y et al. Analysis of apoptosis in FUCCI HeLa cells. Cytometry A. 79, 243-6 (2011)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Nahar K et al. Effects of Chk1 inhibition on the temporal duration of radiation-induced G2 arrest in HeLa cells.<br />J Radiat Res. 55, 1021-7 (2014)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Equilibrina I et al. ASURA (PHB2) interacts with Scc1 through chromatin. Cytogenet Genome Res. 139, 225-33 (2013)
AM-V9010M pFucci-S/G2/M Green-Hyg (Expression vector) Nagano T et al. Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle. 12, 2617-24 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Pauklin S et al. The cell-cycle state of stem cells determines cell fate propensity. Cell. 155, 135-47 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Sugiyama M et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci USA. 106, 20812-7 (2009)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Coronado D et al. A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res. 10, 118-31 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Singh AM et al. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports. 1, 532-44 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Roccio M et al. Predicting stem cell fate changes by differential cell cycle progression patterns. Development. 140, 459-70 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Ogura Y et al. Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development. 138, 577-87 (2011)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Abe T et al. Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Development. 140, 237-46 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Laurent J et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 8, 13-73 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Morikawa H et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem Biophys Res Commun. 401, 268-74 (2010)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Bao Y et al. Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo. Mol Cancer Res. 11, 973-85 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Tomura M et al. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS One. 8, e73801 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Dowling MR et al. Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA. 111, 6377-82 (2014)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Bouchard G et al. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer. 109, 1829-38 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Dan S et al. ZSTK474, a specific phosphatidylinositol 3-kinase inhibitor, induces G1 arrest of the cell cycle in vivo. Eur J Cancer. 48, 936-43 (2012)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Yang L et al. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol. 85, 3001-9 (2011)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Sakaue-Sawano A et al. Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development. 140, 4624-32 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Downey MJ et al. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution. PLoS One. 6, e27886 (2011)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Kaida A et al. Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 318, 288-97 (2012)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Tofighi R et al. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol Sci. 124, 192-201 (2011)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Ito S et al. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One. 7, e36372 (2012)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Kaida A et al. Differential dependence on oxygen tension during the maturation process between monomeric Kusabira Orange 2 and monomeric Azami Green expressed in HeLa cells. Biochem Biophys Res Commun. 421, 855-9 (2012)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Newman RH et al. Fucci: street lights on the road to mitosis. Chem Biol. 15, 97-8 (2008)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Paladino P et al. Identification of herpesvirus proteins that contribute to G1/S arrest. J Virol. 88, 4480-92 (2014)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Hashimoto T et al. Preferential Fas-mediated apoptotic execution at G1 phase: the resistance of mitotic cells to the cell death. Cell Death Dis. 3, e313 (2012)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Ridenour DA et al. CycleTrak: a novel system for the semi-automated analysis of cell cycle dynamics. Dev Biol. 365, 189-95 (2012)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Carlier G et al. Human fucci pancreatic Beta cell lines: new tools to study Beta cell cycle and terminal differentiation. PLoS One. 9, e108202 (2014)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Malka Y et al. Analysis of apoptosis in FUCCI HeLa cells. Cytometry A. 79, 243-6 (2011)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Nahar K et al. Effects of Chk1 inhibition on the temporal duration of radiation-induced G2 arrest in HeLa cells. J Radiat Res. 55, 1021-7 (2014)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Nagano T et al. Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle. 12, 2617-24 (2013)
AM-VS0601M Fucci Cloning vector Set (Orange+Green) Equilibrina I et al. ASURA (PHB2) interacts with Scc1 through chromatin. Cytogenet Genome Res. 139, 225-33 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Pauklin S et al. The cell-cycle state of stem cells determines cell fate propensity. Cell. 155, 135-47 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Sugiyama M et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci USA. 106, 20812-7 (2009)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Coronado D et al. A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res. 10, 118-31 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Singh AM et al. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports. 1, 532-44 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Roccio M et al. Predicting stem cell fate changes by differential cell cycle progression patterns. Development. 140, 459-70 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Ogura Y et al. Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development. 138, 577-87 (2011)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Abe T et al. Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Development. 140, 237-46 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Laurent J et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 8, 13-73 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Morikawa H et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem Biophys Res Commun. 401, 268-74 (2010)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Bao Y et al. Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo. Mol Cancer Res. 11, 973-85 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Tomura M et al. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS One. 8, e73801 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Dowling MR et al. Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA. 111, 6377-82 (2014)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Bouchard G et al. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer. 109, 1829-38 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Dan S et al. ZSTK474, a specific phosphatidylinositol 3-kinase inhibitor, induces G1 arrest of the cell cycle in vivo. Eur J Cancer. 48, 936-43 (2012)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Yang L et al. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol. 85, 3001-9 (2011)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Sakaue-Sawano A et al. Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development. 140, 4624-32 (2013)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Downey MJ et al. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution. PLoS One. 6, e27886 (2011)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Kaida A et al. Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 318, 288-97 (2012)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Tofighi R et al. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol Sci. 124, 192-201 (2011)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Ito S et al. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One. 7, e36372 (2012)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Kaida A et al. Differential dependence on oxygen tension during the maturation process between monomeric Kusabira Orange 2 and monomeric Azami Green expressed in HeLa cells. Biochem Biophys Res Commun. 421, 855-9 (2012)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Newman RH et al. Fucci: street lights on the road to mitosis. Chem Biol. 15, 97-8 (2008)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Paladino P et al. Identification of herpesvirus proteins that contribute to G1/S arrest. J Virol. 88, 4480-92 (2014)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Hashimoto T et al. Preferential Fas-mediated apoptotic execution at G1 phase: the resistance of mitotic cells to the cell death. Cell Death Dis. 3, e313 (2012)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Ridenour DA et al. CycleTrak: a novel system for the semi-automated analysis of cell cycle dynamics. Dev Biol. 365, 189-95 (2012)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Carlier G et al. Human fucci pancreatic Beta cell lines: new tools to study Beta cell cycle and terminal differentiation. PLoS One. 9, e108202 (2014)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Malka Y et al. Analysis of apoptosis in FUCCI HeLa cells. Cytometry A. 79, 243-6 (2011)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Nahar K et al. Effects of Chk1 inhibition on the temporal duration of radiation-induced G2 arrest in HeLa cells. J Radiat Res. 55, 1021-7 (2014)
AM-VS0607M Fucci Expression vector Set (Orange+Green-Hyg) Nagano T et al. Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle. 12, 2617-24 (2013)
AM-VS0607M  Fucci Expression vector Set (Orange+Green-Hyg) Equilibrina I et al. ASURA (PHB2) interacts with Scc1 through chromatin. Cytogenet Genome Res. 139, 225-33 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Pauklin S et al. The cell-cycle state of stem cells determines cell fate propensity. Cell. 155, 135-47 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Sugiyama M et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc Natl Acad Sci USA. 106, 20812-7 (2009)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Coronado D et al. A short G1 phase is an intrinsic determinant of naive embryonic stem cell pluripotency. Stem Cell Res. 10, 118-31 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Singh AM et al. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Reports. 1, 532-44 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Roccio M et al. Predicting stem cell fate changes by differential cell cycle progression patterns. Development. 140, 459-70 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Ogura Y et al. Coordination of mitosis and morphogenesis: role of a prolonged G2 phase during chordate neurulation. Development. 138, 577-87 (2011)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Abe T et al. Visualization of cell cycle in mouse embryos with Fucci2 reporter directed by Rosa26 promoter. Development. 140, 237-46 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Laurent J et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D. BMC Cancer. 8, 13-73 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Morikawa H et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of Cullin1. Biochem Biophys Res Commun. 401, 268-74 (2010)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Bao Y et al. Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo. Mol Cancer Res. 11, 973-85 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Tomura M et al. Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system. PLoS One. 8, e73801 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Dowling MR et al. Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA. 111, 6377-82 (2014)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Bouchard G et al. Pre-irradiation of mouse mammary gland stimulates cancer cell migration and development of lung metastases. Br J Cancer. 109, 1829-38 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Dan S et al. ZSTK474, a specific phosphatidylinositol 3-kinase inhibitor, induces G1 arrest of the cell cycle in vivo. Eur J Cancer. 48, 936-43 (2012)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Yang L et al. Complex cell cycle abnormalities caused by human T-lymphotropic virus type 1 Tax. J Virol. 85, 3001-9 (2011)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Sakaue-Sawano A et al. Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development. 140, 4624-32 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Downey MJ et al. Extracting fluorescent reporter time courses of cell lineages from high-throughput microscopy at low temporal resolution. PLoS One. 6, e27886 (2011)
AM-VS0608M  Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Kaida A et al. Visualizing the effect of hypoxia on fluorescence kinetics in living HeLa cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci). Exp Cell Res. 318, 288-97 (2012)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Tofighi R et al. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol Sci. 124, 192-201 (2011)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Ito S et al. Mechanism of cancer cell death induced by depletion of an essential replication regulator. PLoS One. 7, e36372 (2012)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Kaida A et al. Differential dependence on oxygen tension during the maturation process between monomeric Kusabira Orange 2 and monomeric Azami Green expressed in HeLa cells. Biochem Biophys Res Commun. 421, 855-9 (2012)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Newman RH et al. Fucci: street lights on the road to mitosis. Chem Biol. 15, 97-8 (2008)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Paladino P et al. Identification of herpesvirus proteins that contribute to G1/S arrest. J Virol. 88, 4480-92 (2014)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Hashimoto T et al. Preferential Fas-mediated apoptotic execution at G1 phase: the resistance of mitotic cells to the cell death. Cell Death Dis. 3, e313 (2012)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Ridenour DA et al. CycleTrak: a novel system for the semi-automated analysis of cell cycle dynamics. Dev Biol. 365, 189-95 (2012)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Carlier G et al. Human fucci pancreatic Beta cell lines: new tools to study Beta cell cycle and terminal differentiation. PLoS One. 9, e108202 (2014)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Malka Y et al. Analysis of apoptosis in FUCCI HeLa cells. Cytometry A. 79, 243-6 (2011)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Nahar K et al. Effects of Chk1 inhibition on the temporal duration of radiation-induced G2 arrest in HeLa cells. J Radiat Res. 55, 1021-7 (2014)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Nagano T et al. Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle. 12, 2617-24 (2013)
AM-VS0608M Fucci Expression vector Set (Orange+Green (N+C)-Hyg) Equilibrina I et al. ASURA (PHB2) interacts with Scc1 through chromatin. Cytogenet Genome Res. 139, 225-33 (2013)
B001-5 Recombinant Human IL-18  Nham T et al. Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunol Immunother. 67, 575-587 (2018)(PMID:29299659)
B001-5 Recombinant Human IL-18  Allam O et al. HIV induces production of IL-18 from intestinal epithelial cells that increases intestinal permeability and microbial translocation. PLoS One 13, e0194185 (2018)(PMID:29601578)
B001-5 Recombinant Human IL-18  Bradley T et al. RAB11FIP5 Expression and Altered Natural Killer Cell Function Are Associated with Induction of HIV Broadly Neutralizing Antibody Responses. Cell 175, 387-399.e17 (2018)(PMID:30270043)
B001-5 Recombinant Human IL-18  Bossù P et al. Anti-inflammatory Effects of Homotaurine in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci. 10, 85 (2018)(PMID:30455639)
B001-5 Recombinant Human IL-18  Allam, Ossama, et al. “HIV Induces Production of IL-18 from Intestinal Epithelial Cells That Increases Intestinal Permeability and Microbial Translocation.” PLOS ONE, vol. 13, no. 3, 2018, doi:10.1371/journal.pone.0194185.
B002-5 Recombinant Mouse IL-18  Wang J et al. Caspase-11-dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18. PLoS Pathog. 14, e1007105 (2018)(PMID:29791511)
B002-5 Recombinant Mouse IL-18  Hara H et al. The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell. 175 1651-1664 (2018)(PMID:30392956)
B002-5 Recombinant Mouse IL-18  Zhang X et al. Kctd9 Deficiency Impairs Natural Killer Cell Development and Effector Function. Front Immunol. 10, 744 (2019)(PMID:31024568)
B002-5 Recombinant Mouse IL-18  Park E et al. Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells. Elife.8, 7554 (2019)(PMID:31393266)
B002-5 Recombinant Mouse IL-18  Earl PL et al. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of CAST mice to lethal infection with orthopoxviruses. PLoS Pathog. 16, e1008505 (2020)(PMID:32320436)
B002-5 Recombinant Mouse IL-18  Wang J et al. Caspase-11-dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18. PLoS Pathog. 14, e1007105 (2018)(PMID:29791511)
B002-5 Recombinant Mouse IL-18  Hara H et al. The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell. 175 1651-1664 (2018)(PMID:30392956)
B002-5 Recombinant Mouse IL-18  Zhang X et al. Kctd9 Deficiency Impairs Natural Killer Cell Development and Effector Function. Front Immunol. 10, 744 (2019)(PMID:31024568)
B002-5 Recombinant Mouse IL-18  Park E et al. Toxoplasma gondii infection drives conversion of NK cells into ILC1-like cells. Elife.8, 7554 (2019)(PMID:31393266)
B002-5 Recombinant Mouse IL-18  Earl PL et al. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of CAST mice to lethal infection with orthopoxviruses. PLoS Pathog. 16, e1008505 (2020)(PMID:32320436)
B003-2 Recombinant Human IL-18(without BSA)  Abe Y et al. Role of IL-18 on the activation of Vδ2+ T cells – For the development of novel cancer immunotherapy – Ann. Cancer Res. Ther. 26, 71-76 (2018)
B003-2 Recombinant Human IL-18(without BSA)  Tanaka Y et al. Ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro. PLoS One. 14, e0212455 (2019) (PMID:30840664)
B003-2 Recombinant Human IL-18(without BSA)  Ambegaonkar AA et al. The Differentiation in vitro of Human Tonsil B Cells With the Phenotypic and Functional Characteristics of T-bet+ Atypical Memory B Cells in Malaria. Front Immunol. 10, 852 (2019)(PMID:31068937)
B003-2 Recombinant Human IL-18(without BSA)  Stiglund N et al. Retained NK Cell Phenotype and Functionality in Non-alcoholic Fatty Liver Disease. Front Immunol. 10, 1255 (2019)(PMID:31214196)
B003-5 Recombinant Human IL-18 (without BSA)  Guerville F et al. TCR-dependent sensitization of human γδ T cells to non-myeloid IL-18 in cytomegalovirus and tumor stress surveillance. Oncoimmunology 4, e1003011 (2015)(PMID:26155394)
B003-5 Recombinant Human IL-18 (without BSA)  Molgora M et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 551, 110-114 (2017)(PMID:29072292)
B003-5 Recombinant Human IL-18 (without BSA)  Abe Y et al. Role of IL-18 on the activation of Vδ2+ T cells – For the development of novel cancer immunotherapy – Ann. Cancer Res. Ther. 26, 71-76 (2018)
B003-5 Recombinant Human IL-18 (without BSA)  Tanaka Y et al. Ex vivo-expanded highly purified natural killer cells in combination with temozolomide induce antitumor effects in human glioblastoma cells in vitro. PLoS One. 14, e0212455 (2019) (PMID:30840664)
B003-5 Recombinant Human IL-18 (without BSA)  Ambegaonkar AA et al. The Differentiation in vitro of Human Tonsil B Cells With the Phenotypic and Functional Characteristics of T-bet+ Atypical Memory B Cells in Malaria. Front Immunol. 10, 852 (2019)(PMID:31068937)
B003-5 Recombinant Human IL-18 (without BSA)  Stiglund N et al. Retained NK Cell Phenotype and Functionality in Non-alcoholic Fatty Liver Disease. Front Immunol. 10, 1255 (2019)(PMID:31214196)
B004-2 Recombinant Mouse IL-18(without BSA)  Iijima R et al. Interleukin-18 induces retinal pigment epithelium degeneration in mice. InveVis Sci. 55, 6673-8 (2014)(PMID:25237159)
B004-2 Recombinant Mouse IL-18(without BSA)  Yoshida S et al. Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain. Mol Pain. 14, 1744806918757286 (2018)(PMID:29353540)
B004-2 Recombinant Mouse IL-18(without BSA)  Earl PL et al. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of CAST mice to lethal infection with orthopoxviruses. PLoS Pathog. 16, e1008505 (2020)(PMID:32320436)
B004-5 Recombinant Mouse IL-18(without BSA)  Yoshida S et al. Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain. Mol Pain. 14, 1744806918757286 (2018)(PMID:29353540)
B004-5 Recombinant Mouse IL-18(without BSA)  Earl PL et al. Natural killer cells expanded in vivo or ex vivo with IL-15 overcomes the inherent susceptibility of CAST mice to lethal infection with orthopoxviruses. PLoS Pathog. 16, e1008505 (2020)(PMID:32320436)
B004-5 Recombinant Mouse IL-18(without BSA)  Inoue T et al. Interleukin-18 levels and mouse Leydig cell apoptosis during lipopolysaccharide-induced acute inflammatory conditions. J Reprod Immunol. 141, 103167 (2020)(PMID:32629316)
BMP011 Anti-SLC7A5 (LAT1) (Human) pAb (Polyclonal Antibody) Saito, Y., Matsuda, S., Ohnishi, N. et al. Polarity protein SCRIB interacts with SLC3A2 to regulate proliferation and tamoxifen resistance in ER+ breast cancer. Commun Biol 5, 403 (2022). https://doi.org/10.1038/s42003-022-03363-4
BMP090 Anti-SLC3A2 (CD98/4F2hc) (Human) pAb Saito, Y., Matsuda, S., Ohnishi, N. et al. Polarity protein SCRIB interacts with SLC3A2 to regulate proliferation and tamoxifen resistance in ER+ breast cancer. Commun Biol 5, 403 (2022). https://doi.org/10.1038/s42003-022-03363-3
CY-1185 CycLex® CaMKKβ Kinase Assay Kit Kimura, T., Pydi, S.P., Wang, L. et al. Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nat Commun 13, 1652 (2022). https://doi.org/10.1038/s41467-022-29231-6
CY-8085 CircuLex Human ISG15 ELISA Kit Munnur, D., Teo, Q., Eggermont, D. et al. Altered ISGylation drives aberrant macrophage-dependent immune responses during SARS-CoV-2 infection. Nat Immunol (2021). https://doi.org/10.1038/s41590-021-01035-8
D032-3 Anti-Proton Pump (H, K-ATPaseβ subunit) (Mouse) mAb (Monoclonal Antibody) Kim, S., Min, S., Choi, Y.S. et al. Tissue extracellular matrix hydrogels as alternatives to Matrigel for culturing gastrointestinal organoids. Nat Commun 13, 1692 (2022). https://doi.org/10.1038/s41467-022-29279-4
D038-3 Anti-Bcl-2 (Rat) mAb (Monoclonal Antibody) Miyoshi, T., Nakamura, K., Amioka, N. et al. LCZ696 ameliorates doxorubicin-induced cardiomyocyte toxicity in rats. Sci Rep 12, 4930 (2022). https://doi.org/10.1038/s41598-022-09094-z
D043-3 IL-18 antibody Guo H et al. Levistilide A Ameliorates NLRP3 Expression Involving the Syk-p38/JNK Pathway and Peripheral Obliterans in Rats. Mediators Inflamm. 2018, 7304096 (2018)(PMID:30158835)
D043-3 IL-18 antibody Chen, Jieqiong, et al. “Detection of Il-18 and Il-1β Protein and Mrna in Human Oral Epithelial Cells Induced by Campylobacter Concisus Strains.” Biochemical and Biophysical Research Communications, vol. 518, no. 1, 2019, pp. 44–49., doi:10.1016/j.bbrc.2019.08.006.
D044-3; D045-6 IL-18 antibody Chirita, D., Bronnec, P., Magnotti, F. et al. Mutations in the B30.2 and the central helical scaffold domains of pyrin differentially affect inflammasome activation. Cell Death Dis 14, 213 (2023). https://doi.org/10.1038/s41419-023-05745-9
D044-3 IL-18 antibody Allam O et al. HIV induces production of IL-18 from intestinal epithelial cells that increases intestinal permeability and microbial translocation. PLoS One 13, e0194185 (2018)(PMID:29601578)
D044-3 IL-18 antibody Santegoets SJ et al. CD163 + cytokine-producing cDC2 stimulate intratumoral type 1 T cell responses in HPV16-induced oropharyngeal cancer. J Immunother Cancer. 8, e001053 (2020) (PMID:32771994)
D044-3 IL-18 antibody Furman D et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 23, 174-184 (2017)(PMID:28092664)
D044-3 IL-18 antibody Lagrange B et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun. 9, 242 (2018)(PMID:29339744)
D044-3 IL-18 antibody Bossù P et al. Anti-inflammatory Effects of Homotaurine in Patients With Amnestic Mild Cognitive Impairment. Front Aging Neurosci. 10, 85 (2018)(PMID:30455639)
D044-3 IL-18 antibody Pal A et al. Inhibition of NLRP3 inflammasome activation by cell-permeable stapled peptides. Sci Rep. 9, 4913 (2019)(PMID:30894604)
D044-3 IL-18 antibody Kameda M et al. CXCL9, CXCL10, and CXCL11; biomarkers of pulmonary inflammation associated with autoimmunity in patients with collagen vascular diseases-associated interstitial lung disease and interstitial pneumonia with autoimmune features. PLoS One. 15, e0241719 (2020)(PMID:33137121)
D045-6 IL-18 antibody Furman D et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 23, 174-184 (2017)(PMID:28092664)
D045-6 IL-18 antibody Lagrange B et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun. 9, 242 (2018)(PMID:29339744)
D045-6 IL-18 antibody Pal A et al. Inhibition of NLRP3 inflammasome activation by cell-permeable stapled peptides. Sci Rep. 9, 4913 (2019)(PMID:30894604)
D045-6 IL-18 antibody Kameda M et al. CXCL9, CXCL10, and CXCL11; biomarkers of pulmonary inflammation associated with autoimmunity in patients with collagen vascular diseases-associated interstitial lung disease and interstitial pneumonia with autoimmune features. PLoS One. 15, e0241719 (2020) (PMID:33137121)
D055-3 Anti-M6a (Mouse) mAb (Monoclonal Antibody) Zindel, J., Mittner, J., Bayer, J. et al. Intraperitoneal microbial contamination drives post-surgical peritoneal adhesions by mesothelial EGFR-signaling. Nat Commun 12, 7316 (2021). https://doi.org/10.1038/s41467-021-27612-x
D058-3 Anti-Multi Ubiquitin mAb (Monoclonal Antibody) Kakihara, K., Asamizu, K., Moritsugu, K. et al. Molecular basis of ubiquitin-specific protease 8 autoinhibition by the WW-like domain. Commun Biol 4, 1272 (2021). https://doi.org/10.1038/s42003-021-02802-x
D058-3 Anti-Multi Ubiquitin mAb (Monoclonal Antibody) Li, Y., Cheng, Q., Gao, J. et al. WWP1 upregulation predicts poor prognosis and promotes tumor progression by regulating ubiquitination of NDFIP1 in intrahepatic cholangiocarcinoma. Cell Death Discov. 8, 107 (2022). https://doi.org/10.1038/s41420-022-00882-0
D146-3 Anti-Nectin-1 (Mouse) mAb (Monoclonal Antibody) Mohammad, R.Z., Murakawa, H., Svadlenka, K. et al. A numerical algorithm for modeling cellular rearrangements in tissue morphogenesis. Commun Biol 5, 239 (2022). https://doi.org/10.1038/s42003-022-03174-6
D221-3 Anti-Sap155 mAb (Monoclonal Antibody) Bousquets-Muñoz, P., Díaz-Navarro, A., Nadeu, F. et al. PanCancer analysis of somatic mutations in repetitive regions reveals recurrent mutations in snRNA U2. npj Genom. Med. 7, 19 (2022). https://doi.org/10.1038/s41525-022-00292-2
D238-3 Anti-MORC3 (Human) mAb (Monoclonal Antibody) Kojima-Kita, K., Kuramochi-Miyagawa, S., Nakayama, M. et al. MORC3, a novel MIWI2 association partner, as an epigenetic regulator of piRNA dependent transposon silencing in male germ cells. Sci Rep 11, 20472 (2021). https://doi.org/10.1038/s41598-021-98940-7  (OPEN ACCESS – Published October 14, 2021)
D291-3 Anti-His-tag mAb (Monoclonal Antibody) Li, C., Qiu, M., Chang, L. et al. The osteoprotective role of USP26 in coordinating bone formation and resorption. Cell Death Differ (2022). https://doi.org/10.1038/s41418-021-00904-x
D291-7 Anti-His-tag mAb-HRP-DirecT (Monoclonal Antibody) Ikeuchi, E., Kuroda, D., Nakakido, M. et al. Delicate balance among thermal stability, binding affinity, and conformational space explored by single-domain VHH antibodies. Sci Rep 11, 20624 (2021). https://doi.org/10.1038/s41598-021-98977-8
D291-7 (??) Anti-His-tag mAb-HRP-DirecT (Monoclonal Antibody) Takimoto, R., Tatemichi, Y., Aoki, W. et al. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli. Sci Rep 12, 4182 (2022). https://doi.org/10.1038/s41598-022-08007-4
D343-3 Anti-Phospho-p62 (SQSTM1) (Ser403) mAb (Monoclonal Antibody) Liu, H., Wang, C., Yi, F. et al. Non-canonical function of FIP200 is required for neural stem cell maintenance and differentiation by limiting TBK1 activation and p62 aggregate formation. Sci Rep 11, 23907 (2021). https://doi.org/10.1038/s41598-021-03404-7
D345-3 Anti-1-methyladenosine (m1A) mAb (Monoclonal Antibody) Kuang, W., Jin, H., Yang, F. et al. ALKBH3-dependent m1A demethylation of Aurora A mRNA inhibits ciliogenesis. Cell Discov 8, 25 (2022). https://doi.org/10.1038/s41421-022-00385-3
D345-3 Anti-1-methyladenosine (m1A) mAb (Monoclonal Antibody) Su, Z., Monshaugen, I., Wilson, B. et al. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun 13, 2165 (2022). https://doi.org/10.1038/s41467-022-29790-8
J2-001 Afamin/Wnt3a CM Wang, Z., Yu, Y., Wu, P. et al. Lactate promotes the growth of patient-derived organoids from hepatopancreatobiliary cancers via ENO1/HIF1α pathway and does not affect their drug sensitivities. Cell Death Discov. 8, 214 (2022). https://doi.org/10.1038/s41420-022-01014-4
J2-001 Afamin/Wnt3a CM E. Mihara, et al., Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin., eLife 5 (2016) [PMID: 26902720]
J2-001 Afamin/Wnt3a CM K. Nanki, et al., Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis., Cell 174 (2018) [PMID: 30096312]
J2-001 Afamin/Wnt3a CM S. Sugimoto, et al., Reconstruction of the human colon epithelium in vivo., Cell Stem Cell 22 (2018) [PMID: 29290616]
J2-001 Afamin/Wnt3a CM T. Seino, et al., Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression., Cell Stem Cell 22 (2018) [PMID: 29337182]
J2-001 Afamin/Wnt3a CM S. Sugimoto, et al., Organoid Derivation and Orthotopic Xenotransplantation for Studying Human Intestinal Stem Cell Dynamics., Methods Mol Biol 2171 (2020) [PMID: 32705652]
J2-001 Afamin/Wnt3a CM K. Nanki, et al., Somatic inflammatory gene mutations in human ulcerative colitis epithelium., Nature 577 (2020) [PMID: 31853059]
J2-001 Afamin/Wnt3a CM N. Sasaki, et al., Development of a Scalable Coculture System for Gut Anaerobes and Human Colon Epithelium., Gastroenterology 159 (2020) [PMID: 32199883]
J2-001 Afamin/Wnt3a CM S. Mae, et al., Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential., Cell Reports 32 (2020) [PMID: 32726627]
J2-001 Afamin/Wnt3a CM Y. Nanki, et al., Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing., Scientific Reports 28 (2020) [PMID: 32724113]
J2-001 Afamin/Wnt3a CM K. Miyabayashi, et al., Intraductal transplantation models of human pancreatic ductal adenocarcinoma reveal progressive transition of molecular subtypes., Cancer Discov 10 (2020) [PMID: 32703770]
J2-001 Afamin/Wnt3a CM JS. Roe, et al., Enhancer Reprogramming Promotes Pancreatic Cancer Metastasis., Cell 170 (2017) [PMID: 28757253]
J2-001 Afamin/Wnt3a CM H. Tiriac, et al., Successful creation of pancreatic cancer organoids by means of EUS-guided fine-needle biopsy sampling for personalized cancer treatment., Gastrointest Endosc 87 (2018) [PMID: 29325707]
J2-001 Afamin/Wnt3a CM H. Tiriac, et al., Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer., Cancer Discov 8 (2018) [PMID: 29853643]
J2-001 Afamin/Wnt3a CM H. Oshima, et al., Stat3 is indispensable for damage-induced crypt regeneration but not for Wnt-driven intestinal tumorigenesis., FASEB J 33 (2019) [PMID: 30156908]
J2-001 Afamin/Wnt3a CM M. Fujii, et al., Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition., Cell Stem Cell 23 (2018) [PMID: 30526881]
J2-001 Afamin/Wnt3a CM K. Kawasaki, et al., Chromosome Engineering of Human Colon-Derived Organoids to Develop a Model of Traditional Serrated Adenoma., Gastroenterology 158 (2020) [PMID: 31622618]
J2-001 Afamin/Wnt3a CM K. Kawasaki, et al., An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping., Cell 183 (2020) [PMID: 33159857]
J2-001 Afamin/Wnt3a CM K. Togasaki, et al., Wnt Signaling Shapes the Histologic Variation in Diffuse Gastric Cancer., Gastroenterology 160 (2021) [PMID: 33217450]
J2-001 Afamin/Wnt3a CM S. Sugimoto, et al., An organoid-based organ-repurposing approach to treat short bowel syndrome., Nature 592 (2021) [PMID: 33627870]
J2-001 Afamin/Wnt3a CM T. De Oliveira, et al., Effects of the Novel PFKFB3 Inhibitor KAN0438757 on Colorectal Cancer Cells and Its Systemic Toxicity Evaluation In Vivo., Cancers (Basel) 13 (2021) [PMID: 33671096]
J2-001 Afamin/Wnt3a CM T. Nishina, et al., Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer., Nat Commun 12 (2021) [PMID: 33863879]
J2-001 Afamin/Wnt3a CM T. Ebisudani, et al., Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening., Cell Rep 35 (2021) [PMID: 34038715]
J2-001 Afamin/Wnt3a CM D. Kim, et al., 3D Organoid Culture From Adult Salivary Gland Tissues as an ex vivo Modeling of Salivary Gland Morphogenesis., Front Cell Dev Biol 9 (2021) [PMID: 34458260]
J2-001 Afamin/Wnt3a CM EA. Farshadi, et al., Organoids Derived from Neoadjuvant FOLFIRINOX Patients Recapitulate Therapy Resistance in Pancreatic Ductal Adenocarcinoma., Clin Cancer Res 27 (2021) [PMID: 34580113]
J2-001 Afamin/Wnt3a CM YW. Cho, et al., Patient-derived organoids as a preclinical platform for precision medicine in colorectal cancer., Mol Oncol (2021) [PMID: 34850547]
J2-001 Afamin/Wnt3a CM K. Ikezawa, et al., Establishment of organoids using residual samples from saline flushes during endoscopic ultrasound-guided fine-needle aspiration in patients with pancreatic cancer., Endosc Int Open 10 (2022)
J2-001 Afamin/Wnt3a CM [PMID: 35036290]
J2-001 Afamin/Wnt3a CM K. Toshimitsu, et al., Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer., Nat Chem Biol 18 (2022) [PMID: 35273398]
J2-001 Afamin/Wnt3a CM Z. Wang, et al., Lactate promotes the growth of patient-derived organoids from hepatopancreatobiliary cancers via ENO1/HIF1α pathway and does not affect their drug sensitivities., Cell Death Discov 8 (2022) [PMID: 35443744]
J2-001 Afamin/Wnt3a CM C. Cao, et al., Phenotypical screening on metastatic PRCC-TFE3 fusion translocation renal cell carcinoma organoids reveals potential therapeutic agents., Clin Transl Oncol (2022) [PMID: 35118587]
JM-3999-100 GFP Polyclonal Antibody Ganner, A., Gehrke, C., Klein, M. et al. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Sci Rep 11, 14827 (2021). https://doi.org/10.1038/s41598-021-94132-5
K0046-4 Anti-Integrin α7 (Mouse) mAb-FITC (Monoclonal Antibody) Klockner, I., Schutt, C., Gerhardt, T. et al. Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function. Nat Commun 13, 3180 (2022). https://doi.org/10.1038/s41467-022-30778-7
K0090-3 Anti-Securin (Pds-1) mAb-Discontinued (Monoclonal Antibody) Yu, L., Lang, Y., Hsu, CC. et al. Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene (2021). https://doi.org/10.1038/s41388-021-02106-8
K0208-4 Anti-HLA-A24 (Human) mAb-FITC (Monoclonal Antibody) Jin, X., Ding, Y., Sun, S. et al. Screening HLA-A-restricted T cell epitopes of SARS-CoV-2 and the induction of CD8+ T cell responses in HLA-A transgenic mice. Cell Mol Immunol (2021). https://doi.org/10.1038/s41423-021-00784-8
LC3B and p62   Li, R., Kato, H., Taguchi, Y. et al. Intracellular glucose starvation affects gingival homeostasis and autophagy. Sci Rep 12, 1230 (2022). https://doi.org/10.1038/s41598-022-05398-2
M032-3 Anti-Caspase-8 (Human) mAb (Monoclonal Antibody) Akao, Y., Terazawa, R., Sugito, N. et al. Understanding of cell death induced by the constituents of Taxus yunnanensis wood. Sci Rep 12, 6282 (2022). https://doi.org/10.1038/s41598-022-09655-4
M044-3 Anti-XIAP (MIHA/ILP-a) (Human) mAb (Monoclonal Antibody) Tanzer, M.C., Bludau, I., Stafford, C.A. et al. Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nat Commun 12, 6053 (2021). https://doi.org/10.1038/s41467-021-26289-6
M047-3 Anti-Myc-tag mAb (Monoclonal Antibody) Nikolov, V.N., Malavia, D. & Kubota, T. SWI/SNF and the histone chaperone Rtt106 drive expression of the Pleiotropic Drug Resistance network genes. Nat Commun 13, 1968 (2022). https://doi.org/10.1038/s41467-022-29591-z
M047-3 Anti-Myc-tag mAb (Monoclonal Antibody) Jia, F., Li, H., Jiao, Q. et al. Deubiquitylase OTUD3 prevents Parkinson’s disease through stabilizing iron regulatory protein 2. Cell Death Dis 13, 418 (2022). https://doi.org/10.1038/s41419-022-04704-0
M047-3 Anti-Myc-tag mAb (Monoclonal Antibody) Mo, W., Zhang, J., Zhang, L. et al. Arabidopsis cryptochrome 2 forms photobodies with TCP22 under blue light and regulates the circadian clock. Nat Commun 13, 2631 (2022). https://doi.org/10.1038/s41467-022-30231-10
M047-A48 Anti-Myc-tag mAb-Alexa Fluor® 488 (Monoclonal Antibody) Asanomi, Y., Shigemizu, D., Akiyama, S. et al. A functional variant of SHARPIN confers increased risk of late-onset Alzheimer’s disease. J Hum Genet (2021). https://doi.org/10.1038/s10038-021-00987-x
M048-3 Anti-GFP (Green Fluorescent Protein) mAb (Monoclonal Antibody) Kakihara, K., Asamizu, K., Moritsugu, K. et al. Molecular basis of ubiquitin-specific protease 8 autoinhibition by the WW-like domain. Commun Biol 4, 1272 (2021). https://doi.org/10.1038/s42003-021-02802-x
M048-3 Anti-GFP (Green Fluorescent Protein) mAb (Monoclonal Antibody) Miyamoto, Y., Itoh, Y., Suzuki, T. et al. SARS-CoV-2 ORF6 disrupts nucleocytoplasmic trafficking to advance viral replication. Commun Biol 5, 483 (2022). https://doi.org/10.1038/s42003-022-03427-4
M076-5 or M076-4 mouse IgG2a (isotype control, clone no. 6H3) Wang, Y., Wang, J., Li, X. et al. N1-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun 12, 6314 (2021). https://doi.org/10.1038/s41467-021-26718-6
M079-3 Mouse IgM (isotype control) Saito, T., Yagi, H., Kuo, CW. et al. An embeddable molecular code for Lewis X modification through interaction with fucosyltransferase 9. Commun Biol 5, 676 (2022). https://doi.org/10.1038/s42003-022-03616-1
M114-3 Anti-SUMO-2/3 (Human) mAb (Monoclonal Antibody) Du, L., Liu, W., Pichiorri, F. et al. SUMOylation inhibition enhances multiple myeloma sensitivity to lenalidomide. Cancer Gene Ther (2022). https://doi.org/10.1038/s41417-022-00450-9
M126–3M Anti-monomeric Keima-Red mAb (Monoclonal Antibody) Martinez-Val, A., Bekker-Jensen, D.B., Steigerwald, S. et al. Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution. Nat Commun 12, 7113 (2021). https://doi.org/10.1038/s41467-021-27398-y
M132-3 Anti-HA-tag mAb (Monoclonal Antibody) Gu, H., Yang, J., Zhang, J. et al. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Nat Commun 13, 1564 (2022). https://doi.org/10.1038/s41467-022-29266-10
M150-3MS Anti-Atg16L mAb for My select sampler set (Monoclonal Antibody) Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
M152 Anti-LC3 (Human) mAb (Monoclonal Antibody) Valionyte, E., Yang, Y., Griffiths, S.A. et al. The caspase-6–p62 axis modulates p62 droplets based autophagy in a dominant-negative manner. Cell Death Differ (2021). https://doi.org/10.1038/s41418-021-00912-x
M152-3 Anti-LC3 (Human) mAb (Monoclonal Antibody) Yamamoto, Y., Chino, H., Tsukamoto, S. et al. NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA. Nat Commun 12, 3292 (2021). https://doi.org/10.1038/s41467-021-23599-7
M152-3 Anti-LC3 (Human) mAb (Monoclonal Antibody) Deitersen, J., Berning, L., Stuhldreier, F. et al. High-throughput screening for natural compound-based autophagy modulators reveals novel chemotherapeutic mode of action for arzanol. Cell Death Dis 12, 560 (2021). https://doi.org/10.1038/s41419-021-03830-5
M152-3 Anti-LC3 (Human) mAb (Monoclonal Antibody) Bisicchia, E., Mastrantonio, R., Nobili, A. et al. Restoration of ER proteostasis attenuates remote apoptotic cell death after spinal cord injury by reducing autophagosome overload. Cell Death Dis 13, 381 (2022). https://doi.org/10.1038/s41419-022-04830-9
M162-3 Anti-p62 (SQSTM1) (Human) mAb (Monoclonal Antibody) Duan, L., Hu, M., Tamm, J.A. et al. Arrayed CRISPR reveals genetic regulators of tau aggregation, autophagy and mitochondria in Alzheimer’s disease model. Sci Rep 11, 2879 (2021). https://doi.org/10.1038/s41598-021-82658-7
M162-3   Li, Y., Chen, W., Ogawa, K. et al. Feeder-supported in vitro exercise model using human satellite cells from patients with sporadic inclusion body myositis. Sci Rep 12, 1082 (2022). https://doi.org/10.1038/s41598-022-05029-w
m162-3 Anti-p62 (SQSTM1) (Human) mAb (Monoclonal Antibody) Yu, F., Zhang, Q., Liu, H. et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov 8, 40 (2022). https://doi.org/10.1038/s41421-022-00390-6
M162-3B p62/SQSTM1 Monoclonal anitbody(clone:5F2): Trial Size Lee, M., Nam, H.Y., Kang, HB. et al. Epigenetic regulation of p62/SQSTM1 overcomes the radioresistance of head and neck cancer cells via autophagy-dependent senescence induction. Cell Death Dis 12, 250 (2021). https://doi.org/10.1038/s41419-021-03539-5
M165-8 Anti-RFP mAb-Agarose (Monoclonal Antibody) Yue, X., Tiwari, N., Zhu, L. et al. Tankyrase-1-mediated degradation of Golgin45 regulates glycosyltransferase trafficking and protein glycosylation in Rab2-GTP-dependent manner. Commun Biol 4, 1370 (2021). https://doi.org/10.1038/s42003-021-02899-0
M171-3 Anti-GAPDH mAb (Monoclonal Antibody) Liu, Y., Song, R., Zhao, L. et al. m6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration. Sig Transduct Target Ther 7, 194 (2022). https://doi.org/10.1038/s41392-022-01020-z
M171-7 Anti-GAPDH mAb-HRP-DirecT (Monoclonal Antibody) Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
M171-7 Anti-GAPDH mAb-HRP-DirecT (Monoclonal Antibody) Shimizu, N., Asatsuma-Okumura, T., Yamamoto, J. et al. PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Commun Biol 4, 1277 (2021). https://doi.org/10.1038/s42003-021-02801-y
M171-7 Anti-GAPDH mAb-HRP-DirecT (Monoclonal Antibody) Kieu, T.Q., Tazawa, K., Kawashima, N. et al. Kinetics of LYVE-1-positive M2-like macrophages in developing and repairing dental pulp in vivo and their pro-angiogenic activity in vitro. Sci Rep 12, 5176 (2022). https://doi.org/10.1038/s41598-022-08987-5
M175-3 α-Tubulin Zu, R., Yu, Z., Zhao, J. et al. Quantitative analysis of phosphoproteome in necroptosis reveals a role of TRIM28 phosphorylation in promoting necroptosis-induced cytokine production. Cell Death Dis 12, 994 (2021). https://doi.org/10.1038/s41419-021-04290-7
M176-A48 Anti-EEA1 mAb-Alexa Fluor® 488 (Monoclonal Antibody) Hu, J., Ding, X., Tian, S. et al. TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 12, 391 (2021). https://doi.org/10.1038/s41419-021-03670-3
M177-3 Anti-β-Actin mAb (Monoclonal Antibody) Kashiwagi, K., Shichino, Y., Osaki, T. et al. eIF2B-capturing viral protein NSs suppresses the integrated stress response. Nat Commun 12, 7102 (2021). https://doi.org/10.1038/s41467-021-27337-x
M177-3 Anti-β-Actin mAb (Monoclonal Antibody) Feng, S., Ma, S., Li, K. et al. RIF1-ASF1-mediated high-order chromatin structure safeguards genome integrity. Nat Commun 13, 957 (2022). https://doi.org/10.1038/s41467-022-28588-y
M177-3 Anti-β-Actin mAb (Monoclonal Antibody) Ishihara, S., Hata, K., Hirose, K. et al. The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep 12, 6261 (2022). https://doi.org/10.1038/s41598-022-10143-w
M177-3 Anti-β-Actin mAb (Monoclonal Antibody) Lee, HJ., Song, KH., Oh, S.J. et al. Targeting TCTP sensitizes tumor to T cell-mediated therapy by reversing immune-refractory phenotypes. Nat Commun 13, 2127 (2022). https://doi.org/10.1038/s41467-022-29611-y
M177-3 Anti-β-Actin mAb (Monoclonal Antibody) Ojima, K., Kakegawa, W., Yamasaki, T. et al. Coordination chemogenetics for activation of GPCR-type glutamate receptors in brain tissue. Nat Commun 13, 3167 (2022). https://doi.org/10.1038/s41467-022-30828-0
M179-3 Anti-GM130 mAb (Monoclonal Antibody) Taketomi, T., Yasuda, T., Morita, R. et al. Autism-associated mutation in Hevin/Sparcl1 induces endoplasmic reticulum stress through structural instability. Sci Rep 12, 11891 (2022). https://doi.org/10.1038/s41598-022-15784-5
M180-3 Anti-HA-tag mAb (Monoclonal Antibody) Lu, S., Gu, Y., Wu, Y. et al. Bi-allelic variants in human WDR63 cause male infertility via abnormal inner dynein arms assembly. Cell Discov 7, 110 (2021). https://doi.org/10.1038/s41421-021-00327-5
M180-3 Anti-HA-tag mAb (Monoclonal Antibody) Huang, H., Han, Q., Zheng, H. et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis 13, 13 (2022). https://doi.org/10.1038/s41419-021-04474-1
M180-3 Anti-HA-tag mAb (Monoclonal Antibody) Noda, T., Blaha, A., Fujihara, Y. et al. Sperm membrane proteins DCST1 and DCST2 are required for sperm-egg interaction in mice and fish. Commun Biol 5, 332 (2022). https://doi.org/10.1038/s42003-022-03289-w
M180-3 Anti-HA-tag mAb (Monoclonal Antibody) Jia, F., Li, H., Jiao, Q. et al. Deubiquitylase OTUD3 prevents Parkinson’s disease through stabilizing iron regulatory protein 2. Cell Death Dis 13, 418 (2022). https://doi.org/10.1038/s41419-022-04704-1
M180-3 Anti-HA-tag mAb (Monoclonal Antibody) Ma, K., Luo, M., Xie, G. et al. Ribosomal RNA regulates chromosome clustering during mitosis. Cell Discov 8, 51 (2022). https://doi.org/10.1038/s41421-022-00400-7
M180-7 Anti-HA-tag mAb-HRP-DirecT (Monoclonal Antibody) An, HJ., Lee, CJ., Lee, GE. et al. FBXW7-mediated ERK3 degradation regulates the proliferation of lung cancer cells. Exp Mol Med (2022). https://doi.org/10.1038/s12276-021-00721-9
M185 anti-DDDDK Saito, Y., Matsuda, S., Ohnishi, N. et al. Polarity protein SCRIB interacts with SLC3A2 to regulate proliferation and tamoxifen resistance in ER+ breast cancer. Commun Biol 5, 403 (2022). https://doi.org/10.1038/s42003-022-03363-5
M185-3 Anti-DDDDK-tag mAb (Monoclonal Antibody) Gu, H., Yang, J., Zhang, J. et al. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Nat Commun 13, 1564 (2022). https://doi.org/10.1038/s41467-022-29266-9
M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Wang, X., Liu, Z., Sun, S. et al. SISTER OF TM3 activates FRUITFULL1 to regulate inflorescence branching in tomato. Hortic Res 8, 251 (2021). https://doi.org/10.1038/s41438-021-00677-x
M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Okur, V., Chen, Z., Vossaert, L. et al. De novo variants in H3-3A and H3-3B are associated with neurodevelopmental delay, dysmorphic features, and structural brain abnormalities. npj Genom. Med. 6, 104 (2021). https://doi.org/10.1038/s41525-021-00268-8
M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Wang, R., Qin, Y., Xie, XS. et al. Molecular basis of mEAK7-mediated human V-ATPase regulation. Nat Commun 13, 3272 (2022). https://doi.org/10.1038/s41467-022-30899-z
M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Chen, H., Qi, X., Faulkner, R.A. et al. Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain. Nat Commun 13, 4273 (2022). https://doi.org/10.1038/s41467-022-32025-5
M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Zhang, Z., Nomura, N., Muramoto, Y. et al. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun 13, 4399 (2022). https://doi.org/10.1038/s41467-022-32019-3
M185-3L Anti-DDDDK-tag mAb (Monoclonal Antibody) Sarodaya, N., Tyagi, A., Kim, HJ. et al. Deubiquitinase USP19 extends the residual enzymatic activity of phenylalanine hydroxylase variants. Sci Rep 12, 14243 (2022). https://doi.org/10.1038/s41598-022-18656-0
M185-7 Anti-DDDDK-tag mAb-HRP-DirecT (Monoclonal Antibody) Kieu, T.Q., Tazawa, K., Kawashima, N. et al. Kinetics of LYVE-1-positive M2-like macrophages in developing and repairing dental pulp in vivo and their pro-angiogenic activity in vitro. Sci Rep 12, 5176 (2022). https://doi.org/10.1038/s41598-022-08987-3
M185-7 Anti-DDDDK-tag mAb-HRP-DirecT (Monoclonal Antibody) Sugiyama, S., Yamada, K., Denda, M. et al. CF-PPiD technology based on cell-free protein array and proximity biotinylation enzyme for in vitro direct interactome analysis. Sci Rep 12, 10592 (2022). https://doi.org/10.1038/s41598-022-14872-w
M186 Anti-LC3 (Human) mAb (Monoclonal Antibody) Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
M186-3 Anti-LC3 (Human) mAb (Monoclonal Antibody) Forte, M., Bianchi, F., Cotugno, M. et al. An interplay between UCP2 and ROS protects cells from high-salt-induced injury through autophagy stimulation. Cell Death Dis 12, 919 (2021). https://www.nature.com/articles/s41419-021-04188-4#Sec9
M186-3 Anti-LC3 (Human) mAb (Monoclonal Antibody) Hu, J., Ding, X., Tian, S. et al. TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 12, 391 (2021). https://doi.org/10.1038/s41419-021-03670-3
M186–3 Anti-LC3 (Human) mAb (Monoclonal Antibody) Chimenti, I., Picchio, V., Pagano, F. et al. The impact of autophagy modulation on phenotype and survival of cardiac stromal cells under metabolic stress. Cell Death Discov. 8, 149 (2022). https://doi.org/10.1038/s41420-022-00924-7
M187-3 Anti-IL-33 (Mouse) mAb (Functional Grade)  Saigusa R et al. Fli1-haploinsufficient dermal fibroblasts promote skin-localized transdifferentiation of Th2-like regulatory T cells. Arthritis Res Ther. 20, 23 (2018)(PMID:29415756)
M192-3 Anti-Myc-tag mAb (Monoclonal Antibody) Gu, H., Yang, J., Zhang, J. et al. PCBP2 maintains antiviral signaling homeostasis by regulating cGAS enzymatic activity via antagonizing its condensation. Nat Commun 13, 1564 (2022). https://doi.org/10.1038/s41467-022-29266-12
M192-7 Anti-Myc-tag mAb-HRP-DirecT (Monoclonal Antibody) Shimizu, N., Asatsuma-Okumura, T., Yamamoto, J. et al. PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Commun Biol 4, 1277 (2021). https://doi.org/10.1038/s42003-021-02801-y
M204-3 Anti-RFP mAb (Monoclonal Antibody) Date, Y., Matsuura, A. & Itakura, E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Discov. 8, 37 (2022). https://doi.org/10.1038/s41420-022-00828-6
M215-7 Anti-V5-tag mAb-HRP-DirecT (Monoclonal Antibody) Orikasa, S., Kawashima, N., Tazawa, K. et al. Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9. Sci Rep 12, 682 (2022). https://doi.org/10.1038/s41598-021-04453-8
MABI0317 Anti-Dimethyl Histone H3 (Lys9) mAb-Discontinued (Monoclonal Antibody) Methot, S.P., Padeken, J., Brancati, G. et al. H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat Cell Biol (2021). https://doi.org/10.1038/s41556-021-00776-w
MABI0333 Anti-trimethyl Histone H3 (Lys36) mAb Yano, S., Ishiuchi, T., Abe, S. et al. Histone H3K36me2 and H3K36me3 form a chromatin platform essential for DNMT3A-dependent DNA methylation in mouse oocytes. Nat Commun 13, 4440 (2022). https://doi.org/10.1038/s41467-022-32141-2
MI-12-1 Anti-EGF-R (Human) mAb (Monoclonal Antibody) Kakihara, K., Asamizu, K., Moritsugu, K. et al. Molecular basis of ubiquitin-specific protease 8 autoinhibition by the WW-like domain. Commun Biol 4, 1272 (2021). https://doi.org/10.1038/s42003-021-02802-x
MO48-3 Anti-GFP (Green Fluorescent Protein) mAb (Monoclonal Antibody) Shi, P., Ren, X., Meng, J. et al. Mechanical instability generated by Myosin 19 contributes to mitochondria cristae architecture and OXPHOS. Nat Commun 13, 2673 (2022). https://doi.org/10.1038/s41467-022-30431-3
NG-PLH9010 NanoCulture Plate MH Pattern Low-Binding 96-well Ver.2 Gu, Y., Gao, H., Zhang, H. et al. TRAF4 hyperactivates HER2 signaling and contributes to Trastuzumab resistance in HER2-positive breast cancer. Oncogene (2022). https://doi.org/10.1038/s41388-022-02415-6
P0067 Normal Guinea Pig IgG Vianello, C., Cocetta, V., Catanzaro, D. et al. Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death Dis 13, 398 (2022). https://doi.org/10.1038/s41419-022-04741-9
PD004 Anti-MBP (Myelin Basic Protein) pAb (Polyclonal Antibody) Long, K.L.P., Chao, L.L., Kazama, Y. et al. Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Transl Psychiatry 11, 631 (2021). https://doi.org/10.1038/s41398-021-01745-6
PD009 Anti-rck (p54) pAb (Polyclonal Antibody) Smith, P.R., Loerch, S., Kunder, N. et al. Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nat Commun 12, 6789 (2021). https://doi.org/10.1038/s41467-021-27160-4
PD009 Anti-rck (p54) pAb (Polyclonal Antibody) Bauer, K.E., Bargenda, N., Schieweck, R. et al. RNA supply drives physiological granule assembly in neurons. Nat Commun 13, 2781 (2022). https://doi.org/10.1038/s41467-022-30067-3
PD009 Anti-rck (p54) pAb (Polyclonal Antibody) Cialek, C.A., Galindo, G., Morisaki, T. et al. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat Commun 13, 3345 (2022). https://doi.org/10.1038/s41467-022-30976-3
PD016 Anti-Luciferase pAb (Polyclonal Antibody) Jung, J., Chun, Y., Jang, Y.P. et al. An alcoholic extract of Thuja orientalis L. leaves inhibits autophagy by specifically targeting pro-autophagy PIK3C3/VPS34 complex. Sci Rep 11, 17712 (2021). https://doi.org/10.1038/s41598-021-97216-4
PD017 Anti-Beclin 1 (Human) pAb (Polyclonal Antibody) Chen, YJ., Knupp, J., Arunagiri, A. et al. PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones. Nat Commun 12, 5991 (2021). https://doi.org/10.1038/s41467-021-26225-8
PD029C1 rabbit-anti-Sendai virus Zhou, Z., Zhang, X., Lei, X. et al. Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Sig Transduct Target Ther 6, 382 (2021). https://doi.org/10.1038/s41392-021-00800-3
PD042 Anti-Atg9A pAb (Polyclonal Antibody) Date, Y., Matsuura, A. & Itakura, E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Discov. 8, 37 (2022). https://doi.org/10.1038/s41420-022-00828-7
PM005 Anti-RFP pAb (Polyclonal Antibody) Harada, Y., Yamada, M., Imayoshi, I. et al. Cell cycle arrest determines adult neural stem cell ontogeny by an embryonic Notch-nonoscillatory Hey1 module. Nat Commun 12, 6562 (2021). https://doi.org/10.1038/s41467-021-26605-0
PM005   Haraguchi, T., Koujin, T., Shindo, T. et al. Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun Biol 5, 78 (2022). https://doi.org/10.1038/s42003-022-03021-8
PM005 Anti-RFP pAb (Polyclonal Antibody) Chen, HS., Zhang, XL., Yang, RR. et al. An intein-split transactivator for intersectional neural imaging and optogenetic manipulation. Nat Commun 13, 3605 (2022). https://doi.org/10.1038/s41467-022-31255-x
PM009-7   Izutsu, R., Osaki, M., Nemoto, H. et al. AMIGO2 contained in cancer cell-derived extracellular vesicles enhances the adhesion of liver endothelial cells to cancer cells. Sci Rep 12, 792 (2022). https://doi.org/10.1038/s41598-021-04662-1
PM013-7 Anti-GST-tag pAb-HRP-DirecT (Polyclonal Antibody) Shimizu, N., Asatsuma-Okumura, T., Yamamoto, J. et al. PLZF and its fusion proteins are pomalidomide-dependent CRBN neosubstrates. Commun Biol 4, 1277 (2021). https://doi.org/10.1038/s42003-021-02801-y
PM014 IL-18 antibody Allam O et al. HIV induces production of IL-18 from intestinal epithelial cells that increases intestinal permeability and microbial translocation. PLoS One 13, e0194185 (2018)(PMID:29601578)
PM014 IL-18 antibody Ashida H et al. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase-8. EMBO J. 39, e104469 (2020)(PMID:32657447)
PM020-7 Anti-DDDDK-tag pAb-HRP-DirecT (Polyclonal Antibody) Ko, T., Nomura, S., Yamada, S. et al. Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun 13, 3275 (2022). https://doi.org/10.1038/s41467-022-30630-y
PM032 Anti-His-tag pAb (Polyclonal Antibody) Maeda, R., Fujita, J., Konishi, Y. et al. A panel of nanobodies recognizing conserved hidden clefts of all SARS-CoV-2 spike variants including Omicron. Commun Biol 5, 669 (2022). https://doi.org/10.1038/s42003-022-03630-3
PM033 Anti-IL-33 (Human) pAb (Polyclonal Antibody) Sharma, D., Bisen, S., Kaur, G. et al. IL-33 enhances Jagged1 mediated NOTCH1 intracellular domain (NICD) deubiquitination and pathological angiogenesis in proliferative retinopathy. Commun Biol 5, 479 (2022). https://doi.org/10.1038/s42003-022-03432-7
PM035 Normal Rabbit IgG Bizen, N., Bepari, A.K., Zhou, L. et al. Ddx20, an Olig2 binding factor, governs the survival of neural and oligodendrocyte progenitor cells via proper Mdm2 splicing and p53 suppression. Cell Death Differ (2022). https://doi.org/10.1038/s41418-021-00915-9
PM035 Normal Rabbit IgG Suzuki, H., Abe, R., Shimada, M. et al. The 3′ Pol II pausing at replication-dependent histone genes is regulated by Mediator through Cajal bodies’ association with histone locus bodies. Nat Commun 13, 2905 (2022). https://doi.org/10.1038/s41467-022-30632-w
PM035 Normal Rabbit IgG Matsumoto, Y., Shinjo, K., Mase, S. et al. Characteristic DNA methylation profiles of chorionic villi in recurrent miscarriage. Sci Rep 12, 11673 (2022). https://doi.org/10.1038/s41598-022-15656-y
PM036 Anti-LC3 pAb (Polyclonal Antibody) Peng, Sz., Chen, Xh., Chen, Sj. et al. Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates. Nat Commun 12, 5989 (2021). https://www.nature.com/articles/s41467-021-26295-8
PM036 Anti-LC3 pAb (Polyclonal Antibody) Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
PM036 Anti-LC3 pAb (Polyclonal Antibody) Munson, M.J., Mathai, B.J., Ng, M.Y.W. et al. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat Commun 12, 6101 (2021). https://doi.org/10.1038/s41467-021-26331-7
PM036 Anti-LC3 pAb (Polyclonal Antibody) Bode, M.F., Schmedes, C.M., Egnatz, G.J. et al. Cell type-specific roles of PAR1 in Coxsackievirus B3 infection. Sci Rep 11, 14264 (2021). https://doi.org/10.1038/s41598-021-93759-8
PM036 Anti-LC3 pAb (Polyclonal Antibody) Nahata, M., Mogami, S., Sekine, H. et al. Bcl-2-dependent autophagy disruption during aging impairs amino acid utilization that is restored by hochuekkito. npj Aging Mech Dis 7, 13 (2021). https://doi.org/10.1038/s41514-021-00065-8
PM036 Anti-LC3 pAb (Polyclonal Antibody) Deitersen, J., Berning, L., Stuhldreier, F. et al. High-throughput screening for natural compound-based autophagy modulators reveals novel chemotherapeutic mode of action for arzanol. Cell Death Dis 12, 560 (2021). https://doi.org/10.1038/s41419-021-03830-5
PM036 Anti-LC3 pAb (Polyclonal Antibody) Silwal, P., Kim, J.K., Jeon, S.M. et al. Mitofusin-2 boosts innate immunity through the maintenance of aerobic glycolysis and activation of xenophagy in mice. Commun Biol 4, 548 (2021). https://doi.org/10.1038/s42003-021-02073-6
PM036 Anti-LC3 pAb (Polyclonal Antibody) Sun, Y., Berleth, N., Wu, W. et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis 12, 1028 (2021). https://doi.org/10.1038/s41419-021-04306-2
PM036 Anti-LC3 pAb (Polyclonal Antibody) Gianni’, M., Goracci, L., Schlaefli, A. et al. Role of cardiolipins, mitochondria, and autophagy in the differentiation process activated by all-trans retinoic acid in acute promyelocytic leukemia. Cell Death Dis 13, 30 (2022). https://doi.org/10.1038/s41419-021-04476-z
PM036 Anti-LC3 pAb (Polyclonal Antibody) Yu, F., Zhang, Q., Liu, H. et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov 8, 40 (2022). https://doi.org/10.1038/s41421-022-00390-7
PM036 Anti-LC3 pAb (Polyclonal Antibody) Wu, Z., Xu, Z., Zhou, X. et al. sGRP78 enhances selective autophagy of monomeric TLR4 to regulate myeloid cell death. Cell Death Dis 13, 587 (2022). https://doi.org/10.1038/s41419-022-05048-5
PM036 Anti-LC3 pAb (Polyclonal Antibody) Gomez-Sintes, R., Xin, Q., Jimenez-Loygorri, J.I. et al. Targeting retinoic acid receptor alpha-corepressor interaction activates chaperone-mediated autophagy and protects against retinal degeneration. Nat Commun 13, 4220 (2022). https://doi.org/10.1038/s41467-022-31869-1
PM036 Anti-LC3 pAb (Polyclonal Antibody) Zhou, D., Borsa, M., Puleston, D.J. et al. Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation. Nat Commun 13, 5174 (2022). https://doi.org/10.1038/s41467-022-32718-x
PM036/M152-3 Anti-LC3 pAb (Polyclonal Antibody)/Anti-LC3 (Human) mAb (Monoclonal Antibody) Ash, D., Sudhahar, V., Youn, SW. et al. The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun 12, 3091 (2021). https://doi.org/10.1038/s41467-021-23408-1
PM037 Anti-GABARAP pAb (Polyclonal Antibody) Tamargo-Gómez, I., Martínez-García, G.G., Suárez, M.F. et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ 28, 2651–2672 (2021). https://doi.org/10.1038/s41418-021-00776-1
PM037 Anti-GABARAP pAb (Polyclonal Antibody) Zois, C.E., Hendriks, A.M., Haider, S. et al. Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation. Cell Death Dis 13, 573 (2022). https://doi.org/10.1038/s41419-022-05005-2
PM038 Anti-GATE-16 pAb (Polyclonal Antibody) Tamargo-Gómez, I., Martínez-García, G.G., Suárez, M.F. et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ 28, 2651–2672 (2021). https://doi.org/10.1038/s41418-021-00776-1
PM040
Anti-Atg16L (Human) pAb (Polyclonal Antibody)
Deitersen, J., Berning, L., Stuhldreier, F. et al. High-throughput screening for natural compound-based autophagy modulators reveals novel chemotherapeutic mode of action for arzanol. Cell Death Dis 12, 560 (2021). https://doi.org/10.1038/s41419-021-03830-5
PM040  Anti-Atg16L (Human) pAb (Polyclonal Antibody) Valionyte, E., Yang, Y., Griffiths, S.A. et al. The caspase-6–p62 axis modulates p62 droplets based autophagy in a dominant-negative manner. Cell Death Differ (2021). https://doi.org/10.1038/s41418-021-00912-x
PM044 Anti-PIWIL2 (MILI) (Mouse) pAb (Polyclonal Antibody) Kojima-Kita, K., Kuramochi-Miyagawa, S., Nakayama, M. et al. MORC3, a novel MIWI2 association partner, as an epigenetic regulator of piRNA dependent transposon silencing in male germ cells. Sci Rep 11, 20472 (2021). https://doi.org/10.1038/s41598-021-98940-7  (OPEN ACCESS – Published October 14, 2021)
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Feng, L., Chen, M., Li, Y. et al. Sirt1 deacetylates and stabilizes p62 to promote hepato-carcinogenesis. Cell Death Dis 12, 405 (2021). https://doi.org/10.1038/s41419-021-03666-z
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Bode, M.F., Schmedes, C.M., Egnatz, G.J. et al. Cell type-specific roles of PAR1 in Coxsackievirus B3 infection. Sci Rep 11, 14264 (2021). https://doi.org/10.1038/s41598-021-93759-8
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Yamamoto, Y., Chino, H., Tsukamoto, S. et al. NEK9 regulates primary cilia formation by acting as a selective autophagy adaptor for MYH9/myosin IIA. Nat Commun 12, 3292 (2021). https://doi.org/10.1038/s41467-021-23599-7
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Iwama, H., Mehanna, S., Imasaka, M. et al. Cathepsin B and D deficiency in the mouse pancreas induces impaired autophagy and chronic pancreatitis. Sci Rep 11, 6596 (2021). https://doi.org/10.1038/s41598-021-85898-9
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Nakatsuka, A., Yamaguchi, S., Eguchi, J. et al. A Vaspin–HSPA1L complex protects proximal tubular cells from organelle stress in diabetic kidney disease. Commun Biol 4, 373 (2021). https://doi.org/10.1038/s42003-021-01902-y
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Fang, S., Wan, X., Zou, X. et al. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis 12, 88 (2021). https://doi.org/10.1038/s41419-020-03357-1
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Valionyte, E., Yang, Y., Griffiths, S.A. et al. The caspase-6–p62 axis modulates p62 droplets based autophagy in a dominant-negative manner. Cell Death Differ (2021). https://doi.org/10.1038/s41418-021-00912-x
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Akazawa, Y., Taneike, M., Ueda, H. et al. Rubicon-regulated beta-1 adrenergic receptor recycling protects the heart from pressure overload. Sci Rep 12, 41 (2022). https://doi.org/10.1038/s41598-021-03920-6
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Date, Y., Matsuura, A. & Itakura, E. Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Discov. 8, 37 (2022). https://doi.org/10.1038/s41420-022-00828-8
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Li, T., Lu, D., Yao, C. et al. Kansl1 haploinsufficiency impairs autophagosome-lysosome fusion and links autophagic dysfunction with Koolen-de Vries syndrome in mice. Nat Commun 13, 931 (2022). https://doi.org/10.1038/s41467-022-28613-0
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Bisicchia, E., Mastrantonio, R., Nobili, A. et al. Restoration of ER proteostasis attenuates remote apoptotic cell death after spinal cord injury by reducing autophagosome overload. Cell Death Dis 13, 381 (2022). https://doi.org/10.1038/s41419-022-04830-10
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Montagna, C., Svensson, R.B., Bayer, M.L. et al. Autophagy guards tendon homeostasis. Cell Death Dis 13, 402 (2022). https://doi.org/10.1038/s41419-022-04824-7
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Jin, Y., Liu, Y., Xu, L. et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis 13, 512 (2022). https://doi.org/10.1038/s41419-022-04966-8
PM045 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody) Wrobel, L., Hill, S.M., Djajadikerta, A. et al. Compounds activating VCP D1 ATPase enhance both autophagic and proteasomal neurotoxic protein clearance. Nat Commun 13, 4146 (2022). https://doi.org/10.1038/s41467-022-31905-0
PM045/PM074 Anti-p62 (SQSTM1) (Human) pAb (Polyclonal Antibody)/ Anti-Phospho-p62 (SQSTM1) (Ser351) pAb (Polyclonal Antibody) Matsuu-Matsuyama, M., Shichijo, K., Matsuda, K. et al. Age-dependent effects on radiation-induced carcinogenesis in the rat thyroid. Sci Rep 11, 19096 (2021). https://doi.org/10.1038/s41598-021-98481-z
PM053 Anti-β-Actin pAb (Polyclonal Antibody) Kashiwagi, K., Shichino, Y., Osaki, T. et al. eIF2B-capturing viral protein NSs suppresses the integrated stress response. Nat Commun 12, 7102 (2021). https://doi.org/10.1038/s41467-021-27337-x
PM053 Anti-β-Actin pAb (Polyclonal Antibody) Gao, Y., Kamogashira, T., Fujimoto, C. et al. Pyrroloquinoline quinone (PQQ) protects mitochondrial function of HEI-OC1 cells under premature senescence. npj Aging 8, 3 (2022). https://doi.org/10.1038/s41514-022-00083-0
PM053-7 Anti-β-Actin pAb-HRP-DirecT (Polyclonal Antibody) Wo, L., Zhang, X., Ma, C. et al. LncRNA HABON promoted liver cancer cells survival under hypoxia by inhibiting mPTP opening. Cell Death Discov. 8, 171 (2022). https://doi.org/10.1038/s41420-022-00917-6
PM053-7 Anti-β-Actin pAb-HRP-DirecT (Polyclonal Antibody) Zhang, C., Ma, HM., Dong, SS. et al. Furin extracellularly cleaves secreted PTENα/β to generate C-terminal fragment with a tumor-suppressive role. Cell Death Dis 13, 532 (2022). https://doi.org/10.1038/s41419-022-04988-2
PM054 Anti-α-Tubulin pAb (Polyclonal Antibody) Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
PM054 Anti-α-Tubulin pAb (Polyclonal Antibody) Würtz, M., Zupa, E., Atorino, E.S. et al. Modular assembly of the principal microtubule nucleator γ-TuRC. Nat Commun 13, 473 (2022). https://doi.org/10.1038/s41467-022-28079-0
PM054 Anti-α-Tubulin pAb (Polyclonal Antibody) Tsukahara, S., Shiota, M., Takamatsu, D. et al. Cancer genomic profiling identified dihydropyrimidine dehydrogenase deficiency in bladder cancer promotes sensitivity to gemcitabine. Sci Rep 12, 8535 (2022). https://doi.org/10.1038/s41598-022-12528-3
PM054-7 Anti-α-Tubulin pAb-HRP-DirecT (Polyclonal Antibody) Yamanaka, S., Horiuchi, Y., Matsuoka, S. et al. A proximity biotinylation-based approach to identify protein-E3 ligase interactions induced by PROTACs and molecular glues. Nat Commun 13, 183 (2022). https://doi.org/10.1038/s41467-021-27818-z
PM054-7 Anti-α-Tubulin pAb-HRP-DirecT (Polyclonal Antibody) Kieu, T.Q., Tazawa, K., Kawashima, N. et al. Kinetics of LYVE-1-positive M2-like macrophages in developing and repairing dental pulp in vivo and their pro-angiogenic activity in vitro. Sci Rep 12, 5176 (2022). https://doi.org/10.1038/s41598-022-08987-4
PM054-7 Anti-α-Tubulin pAb-HRP-DirecT (Polyclonal Antibody) Sugiyama, S., Yamada, K., Denda, M. et al. CF-PPiD technology based on cell-free protein array and proximity biotinylation enzyme for in vitro direct interactome analysis. Sci Rep 12, 10592 (2022). https://doi.org/10.1038/s41598-022-14872-w
PM083 Anti-Per2 (Mouse) pAb (Polyclonal Antibody) An, Y., Yuan, B., Xie, P. et al. Decoupling PER phosphorylation, stability and rhythmic expression from circadian clock function by abolishing PER-CK1 interaction. Nat Commun 13, 3991 (2022). https://doi.org/10.1038/s41467-022-31715-4
PM091 Anti-Per1 (Mouse) pAb (Polyclonal Antibody) An, Y., Yuan, B., Xie, P. et al. Decoupling PER phosphorylation, stability and rhythmic expression from circadian clock function by abolishing PER-CK1 interaction. Nat Commun 13, 3991 (2022). https://doi.org/10.1038/s41467-022-31715-4
RN007P Anti-IGF2BP1 (IMP1) (Human) pAb (Polyclonal Antibody) Zhang, S., Huang, W., Ren, L. et al. Comparison of viral RNA–host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res (2021). https://doi.org/10.1038/s41422-021-00581-y
RN028PW Anti-EIF2C1 (AGO1) pAb Zhang, Y., Tan, YY., Chen, PP. et al. Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis 12, 1161 (2021). https://doi.org/10.1038/s41419-021-04436-7
RN123PW Anti-YTHDF2 pAb (Polyclonal Antibody) Liu, Y., Song, R., Zhao, L. et al. m6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration. Sig Transduct Target Ther 7, 194 (2022). https://doi.org/10.1038/s41392-022-01020-z
SP5004 Peptide H-2Kb TRP-2 SVYDFFVWL 1 mg Afroj, Tania, et al. “Blockade of PD-1/PD-L1 Pathway Enhances the Antigen-Presenting Capacity of Fibrocytes.” The Journal of Immunology, vol. 206, no. 6, 2021, pp. 1204–1214., https://doi.org/10.4049/jimmunol.2000909.
TB-5001-1 iTAg Tetramer/PE – H-2 Kb OVA (SIINFEKL) Otano, I., Azpilikueta, A., Glez-Vaz, J. et al. CD137 (4-1BB) costimulation of CD8+ T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation. Nat Commun 12, 7296 (2021). https://doi.org/10.1038/s41467-021-27613-w
TB-5001-2 iTAg Tetramer/APC – H-2 Kb OVA (SIINFEKL) Feizi, N., Focaccetti, C., Pacella, I. et al. CD8+ T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death Dis 12, 1026 (2021). https://doi.org/10.1038/s41419-021-04310-6
TB-5001-4 Tetramer/BV421 – H-2 Kb OVA (SIINFEKL) Lei, X., Lin, H., Wang, J. et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat Commun 13, 3882 (2022). https://doi.org/10.1038/s41467-022-31417-x
TB-5018-2 iTAg Tetramer/APC- H-2 Db RSV Tetramer-NAITNAKII APC Hong, S., Ruan, S., Greenberg, Z. et al. Development of surface engineered antigenic exosomes as vaccines for respiratory syncytial virus. Sci Rep 11, 21358 (2021). https://doi.org/10.1038/s41598-021-00765-x
TBCM4-R1011I-1 iTAg Custom Tetramer/PE – DRB1*01:01- 500 uL (IP) Wild, K., Smits, M., Killmer, S. et al. Pre-existing immunity and vaccine history determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination. Nat Commun 12, 6720 (2021). https://doi.org/10.1038/s41467-021-27064-4
TB-M507-1 H-2Kb MuLV p15E Tetramer-KSPWFTTL-PE Chan, S., Belmar, N., Ho, S. et al. An anti-PD-1–GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. Nat Cancer (2022). https://doi.org/10.1038/s43018-022-00334-9
TB-M507-1 H-2Kb MuLV p15E Tetramer-KSPWFTTL-PE Saddawi-Konefka, R., O’Farrell, A., Faraji, F. et al. Lymphatic-preserving treatment sequencing with immune checkpoint inhibition unleashes cDC1-dependent antitumor immunity in HNSCC. Nat Commun 13, 4298 (2022). https://doi.org/10.1038/s41467-022-31941-w
TB-M804-1 HLA-DRB1*01:01 Influenza HA 306-318 Tetramer-PKYVKQNTLKLAT-PE Wild, K., Smits, M., Killmer, S. et al. Pre-existing immunity and vaccine history determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination. Nat Commun 12, 6720 (2021). https://doi.org/10.1038/s41467-021-27064-3
TSCM-3-H2Kb-3 Custom Tetramer/FITC – H-2Kb (IP) He, J., Shangguan, X., Zhou, W. et al. Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. Nat Commun 12, 4371 (2021). https://doi.org/10.1038/s41467-021-24619-2
  Rabbit anti-FYCO1 antibody Satoh, K., Takemura, Y., Satoh, M. et al. Loss of FYCO1 leads to cataract formation. Sci Rep 11, 13771 (2021). https://doi.org/10.1038/s41598-021-93110-1
    Wang, D., Fu, B., Shen, X. et al. Restoration of HBV-specific CD8+ T-cell responses by sequential low-dose IL-2 treatment in non-responder patients after IFN-α therapy. Sig Transduct Target Ther 6, 376 (2021). https://doi.org/10.1038/s41392-021-00776-0
    Ando, Y., Nakazawa, H., Miura, D. et al. Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Sci Rep 11, 21882 (2021). https://doi.org/10.1038/s41598-021-01331-1
    Ando, Y., Nakazawa, H., Miura, D. et al. Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Sci Rep 11, 21882 (2021). https://doi.org/10.1038/s41598-021-01331-2
    Shlomovitz, I., Erlich, Z., Arad, G. et al. Proteomic analysis of necroptotic extracellular vesicles. Cell Death Dis 12, 1059 (2021). https://doi.org/10.1038/s41419-021-04317-z
    Min, KD., Asakura, M., Shirai, M. et al. ASB2 is a novel E3 ligase of SMAD9 required for cardiogenesis. Sci Rep 11, 23056 (2021). https://doi.org/10.1038/s41598-021-02390-0
  rabbit anti-β-Galactosidase Ding, Y., Wang, G., Zhan, M. et al. Hippo signaling suppresses tumor cell metastasis via a Yki-Src42A positive feedback loop. Cell Death Dis 12, 1126 (2021). https://doi.org/10.1038/s41419-021-04423-y
    Kawai, S., Nakano, K., Tamai, K. et al. Generation of a lung squamous cell carcinoma three-dimensional culture model with keratinizing structures. Sci Rep 11, 24305 (2021). https://doi.org/10.1038/s41598-021-03708-8
    Ohyagi, M., Nagata, T., Ihara, K. et al. DNA/RNA heteroduplex oligonucleotide technology for regulating lymphocytes in vivo. Nat Commun 12, 7344 (2021). https://doi.org/10.1038/s41467-021-26902-8
    Kavalchuk, M., Jomaa, A., Müller, A.U. et al. Structural basis of prokaryotic ubiquitin-like protein engagement and translocation by the mycobacterial Mpa-proteasome complex. Nat Commun 13, 276 (2022). https://doi.org/10.1038/s41467-021-27787-3
    Delaney, C.E., Methot, S.P., Kalck, V. et al. SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol (2022). https://doi.org/10.1038/s41594-021-00712-4
    Hikichi, T., Sakamoto, M., Harada, M. et al. Identification of cytotoxic T cells and their T cell receptor sequences targeting COVID-19 using MHC class I-binding peptides. J Hum Genet (2022). https://doi.org/10.1038/s10038-022-01013-4
    Han, H., Yang, C., Ma, J. et al. N7-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun 13, 1478 (2022). https://doi.org/10.1038/s41467-022-29125-7
    Zhao, Y., Peng, D., Liu, Y. et al. Usp8 promotes tumor cell migration through activating the JNK pathway. Cell Death Dis 13, 286 (2022). https://doi.org/10.1038/s41419-022-04749-1
    Maurer, M.F., Lewis, K.E., Kuijper, J.L. et al. The engineered CD80 variant fusion therapeutic davoceticept combines checkpoint antagonism with conditional CD28 costimulation for anti-tumor immunity. Nat Commun 13, 1790 (2022). https://doi.org/10.1038/s41467-022-29286-5
    Wang, L., Lan, X. Rapid screening of TCR-pMHC interactions by the YAMTAD system. Cell Discov 8, 30 (2022). https://doi.org/10.1038/s41421-022-00386-2
    Eteleeb, A.M., Thunuguntla, P.K., Gelev, K.Z. et al. LINC00355 regulates p27KIP expression by binding to MENIN to induce proliferation in late-stage relapse breast cancer. npj Breast Cancer 8, 49 (2022). https://doi.org/10.1038/s41523-022-00412-2
    Kimura-Yoshida, C., Mochida, K., Kanno, SI. et al. USP39 is essential for mammalian epithelial morphogenesis through upregulation of planar cell polarity components. Commun Biol 5, 378 (2022). https://doi.org/10.1038/s42003-022-03254-7
  KeimaRed Engedal, N., Sønstevold, T., Beese, C., Selladurai, S., Melcher, T., Simensen, J., Frankel, L., Urbanucci, A., & Torgersen, M. (2022). Measuring autophagic cargo flux with keima-based probes. Autophagy and Cancer, 99–115. https://doi.org/10.1007/978-1-0716-2071-7_7
  KeimaRed Hayashi, H., Wang, T., Tanaka, M., Ogiwara, S., Okada, C., Ito, M., Fukunishi, N., Iida, Y., Nakamura, A., Sasaki, A., Amano, S., Yoshida, K., Otomo, A., Ohtsuka, M., & Hadano, S. (2020). Monitoring the autophagy-endolysosomal system using Monomeric Keima-Fused MAP1LC3B. PLOS ONE, 15(6). https://doi.org/10.1371/journal.pone.0234180
  KeimaRed Li, T., Liu, Y., Xu, W., Dai, X., Liu, R., Gao, Y., Chen, Z., & Li, Y. (2019). Polydatin mediates parkin-dependent mitophagy and protects against mitochondria-dependent apoptosis in acute respiratory distress syndrome. Laboratory Investigation, 99(6), 819–829. https://doi.org/10.1038/s41374-019-0191-3
  KeimaRed Liu, Y.-T., Sliter, D. A., Shammas, M. K., Huang, X., Wang, C., Calvelli, H., Maric, D. S., & Narendra, D. P. (2021). MT-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than Mito-QC. Autophagy, 17(11), 3753–3762. https://doi.org/10.1080/15548627.2021.1896924
  KeimaRed Ma, C., Wang, X., He, S., Zhang, L., Bai, J., Qu, L., Qi, J., Zheng, X., Zhu, X., Mei, J., Guan, X., Yuan, H., & Zhu, D. (2022). Ubiquitinated AIF is a major mediator of hypoxia-induced mitochondrial dysfunction and pulmonary artery smooth muscle cell proliferation. Cell &amp; Bioscience, 12(1). https://doi.org/10.1186/s13578-022-00744-3
  KeimaRed Nishikawa, M., Nakano, S., Nakao, H., Sato, K., Sugiyama, T., Akao, Y., Nagaoka, H., Yamakawa, H., Nagase, T., & Ueda, H. (2019). The interaction between PLEKHG2 and ABL1 suppresses cell growth via the NF-ΚB signaling pathway in HEK293 cells. Cellular Signalling, 61, 93–107. https://doi.org/10.1016/j.cellsig.2019.04.016
  KeimaRed Wang, J., Zhu, P., Li, R., Ren, J., Zhang, Y., & Zhou, H. (2020). Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics, 10(1), 384–397. https://doi.org/10.7150/thno.40098
  KeimaRed Yamashita, S.-ichi, & Kanki, T. (2017). Detection of hypoxia-induced and iron depletion-induced mitophagy in mammalian cells. Mitophagy, 141–149. https://doi.org/10.1007/7651_2017_19
    Petkau, G., Mitchell, T.J., Chakraborty, K. et al. The timing of differentiation and potency of CD8 effector function is set by RNA binding proteins. Nat Commun 13, 2274 (2022). https://doi.org/10.1038/s41467-022-29979-x
    Nishiko, M., Sakamoto, T., Mun, S. et al. Superoxide dismutase 6 is required during metamorphosis for the development of properly movable legs in Tribolium castaneum. Sci Rep 12, 6900 (2022). https://doi.org/10.1038/s41598-022-10166-3
    hang, Y., Wang, M., Meng, F. et al. A novel SRSF3 inhibitor, SFI003, exerts anticancer activity against colorectal cancer by modulating the SRSF3/DHCR24/ROS axis. Cell Death Discov. 8, 238 (2022). https://doi.org/10.1038/s41420-022-01039-9
    Hagino, T., Kato, T., Kasuya, G. et al. Cryo-EM structures of thylakoid-located voltage-dependent chloride channel VCCN1. Nat Commun 13, 2505 (2022). https://doi.org/10.1038/s41467-022-30292-w
  anti-IL-33 Ohno T et al. Paracrine IL-33 stimulation enhances lipopolysaccharide-mediated macrophage activation. PLoS One 6, eOhno, Tatsukuni, et al. “Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation.” PLoS ONE, vol. 6, no. 4, 2011, doi:10.1371/journal.pone.0018404.
  anti-IL-33 Bunting, Melissa M., et al. “Interleukin-33 Drives Activation of Alveolar Macrophages and Airway Inflammation in a Mouse Model of Acute Exacerbation of Chronic Asthma.” BioMed Research International, vol. 2013, 2013, pp. 1–10., doi:10.1155/2013/250938.
  anti-IL-33 Shadie, A M, et al. “Ambient Particulate Matter Induces an Exacerbation of Airway Inflammation in Experimental Asthma: Role of Interleukin-33.” Clinical and Experimental Immunology, vol. 177, no. 2, 2014, pp. 491–499., doi:10.1111/cei.12348.
  anti-IL-33 Saigusa, Ryosuke, et al. “Fli1-Haploinsufficient Dermal Fibroblasts Promote Skin-Localized Transdifferentiation of th2-like Regulatory T Cells.” Arthritis Research & Therapy, vol. 20, no. 1, 2018, doi:10.1186/s13075-018-1521-3.
  anti-IL-33 Angulo, Evelyn L., et al. “Comparison of IL-33 and IL-5 Family Mediated Activation of Human Eosinophils.” PLOS ONE, vol. 14, no. 9, 2019, doi:10.1371/journal.pone.0217807.
  anti-IL-33 Chacon, Nathalie, et al. “Implications of Helminth Immunomodulation on Covid-19 Co-Infections.” Life Research, vol. 4, no. 3, 2021, p. 27., doi:10.53388/life2021-0502-309.
  anti-IL-33 Li, Xiaochen, et al. “Interleukin-33, a Potential Cytokine Expressed in the Tumor Microenvironment Is Involved in Antitumor Immunotherapy through Facilitating CD8+ T Cells.” Journal of Interferon & Cytokine Research, vol. 38, no. 11, 2018, pp. 491–499., doi:10.1089/jir.2018.0069.
  anti-IL-33 Murakami, Shokei, et al. “An Epidermal Keratinocyte Homogenate Induced Type 2 and Proinflammatory Cytokine Expression in Cultured Dermal Cells.” Journal of Dermatological Science, 2022, doi:10.1016/j.jdermsci.2022.04.002.
  anti-IL-33 Okragly, Angela J, et al. “Generation and Characterization of Torudokimab (LY3375880): A Monoclonal Antibody That Neutralizes Interleukin-33.” Journal of Inflammation Research, Volume 14, 2021, pp. 3823–3835., doi:10.2147/jir.s320287.
  IL-18 Alsaleh, G., et al., J. Immunol. 182, 5088-5097 (2009)
  IL-18 Thompson, S. R., et al., Clin. Chemist. 53, 2078-2085 (2007)
  IL-18 Omoto, Y., et al., J. Immunol. 177, 8315-8319 (2006)
  IL-18 Vujisic, S., et al., Hum. Reprod. 21, 2650-2655 (2006)
  IL-18 Parikh, C. R., et al., J. Am. Soc. Nephrol. 16, 3046-3052 (2005)
  IL-18 Tada, H., et al., Infect. Immunol. 73, 7967-7976 (2005)
  IL-18 Baratin, M. L., et al., PNAS. 102, 14747-14752 (2005)
  IL-18 Oku, H., et al., Hum. Reprod. 19, 709-714 (2004)
  IL-18 Kaizu, M., et al., Virology 313, 8-12 (2003)
  IL-18 Ahmad, R., et al., J. Virol. 76, 12448-12456 (2002)
  IL-18 Rouabhia, M., et al., Infect. Immunol. 75, 3739-3746 (2002)
  IL-18 Shida, K., et al., J. Immunol. 166, 6671-6679 (2001)
  IL-18 Narita, M., et al., Clin. Diagn. Lab. 7, 909-914 (2000)
  IL-18 Tao, D., et al., Cell Immunol. 173, 230-235 (1998)
  IL-18 Taniguchi, M., et al., J. Immunol. Methods 206, 107-113 (1997)
  IL-18 Micallef, M., et al., Eur. J. Immunol. 26, 1647-1651 (1996)
  IL-18 Ushio, S., et al., J. Immunol. 156, 4274-4279 (1996)
  IL-18 amura, et al. (1995). Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 378. 88-91.
  IL-18 Gracie, J., Robertson, S., & McInnes, I. (2003). Interleukin-18. Journal of Leukocyte Biology, 73(2), 213-224. 
  IL-18 Washburn, K., Zappitelli, M., Arikan, A., Loftis, L., Yalavarthy, R., Parikh, C., … Goldstein, S. (2007). Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrology Dialysis Transplantation, 23(2), 566-572
  IL-18 Trøseid, M., Seljeflot, I., & Arnesen, H. (2010). The role of interleukin-18 in the metabolic syndrome. Cardiovascular Diabetology, 9(11).
  IL18 Antibody Anderko, Renee R., et al. “IL-18 Responsiveness Defines Limitations in Immune Help for Specialized FCRΓ–NK Cells.” The Journal of Immunology, vol. 205, no. 12, 2020, pp. 3429–3442., doi:10.4049/jimmunol.2000430.
  IL18 Antibody Girard-Guyonvarc’h, Charlotte, et al. “Unopposed IL-18 Signaling Leads to Severe tlr9-Induced Macrophage Activation Syndrome in Mice.” Blood, vol. 131, no. 13, 2018, pp. 1430–1441., doi:10.1182/blood-2017-06-789552.
  IL18 Antibody Kaur, Davinder, et al. “Interleukin‐18, IL‐18 Binding Protein and IL‐18 Receptor Expression in Asthma: A Hypothesis Showing IL‐18 Promotes Epithelial Cell Differentiation.” Clinical & Translational Immunology, vol. 10, no. 6, 2021, doi:10.1002/cti2.1301.
  IL18 Antibody Krei, J M, et al. “The Role of Interleukin-18 in the Diagnosis and Monitoring of Hemophagocytic Lymphohistiocytosis/Macrophage Activation Syndrome – A Systematic Review.” Clinical and Experimental Immunology, vol. 203, no. 2, 2020, pp. 174–182., doi:10.1111/cei.13543.
  Mouse IL-18 ELISA Kit  Lebratti, Tania, et al. “A Sustained Type I IFN-Neutrophil-Il-18 Axis Drives Pathology during Mucosal Viral Infection.” ELife, vol. 10, 2021, doi:10.7554/elife.65762.
  IL18 ELISA  Lee, Kyung-Mi, et al. “Quercetin Inhibits the Poly(Da:Dt)-Induced Secretion of IL-18 via down-Regulation of the Expressions of AIM2 and pro-Caspase-1 by Inhibiting the JAK2/STAT1 Pathway in IFN-γ-Primed Human Keratinocytes.” Biochemical and Biophysical Research Communications, vol. 503, no. 1, 2018, pp. 116–122., doi:10.1016/j.bbrc.2018.05.191.
  IL18 Antibody Sanchez-Lopez, Elsa, et al. “Choline Uptake and Metabolism Modulate Macrophage Il-1β and IL-18 Production.” Cell Metabolism, vol. 29, no. 6, 2019, doi:10.1016/j.cmet.2019.03.011.
  Recombinant Mouse IL-18  Tomo, Yonezawa, et al. “Novel Reporter System Monitoring IL-18 Specific Signaling Can Be Applied to High-Throughput Screening.” Proceedings for Annual Meeting of The Japanese Pharmacological Society, vol. 93, 2020, doi:10.1254/jpssuppl.93.0_1-lbs-10.
  IL18 ELISA  Umare, Vinod, et al. “Clinical Implications of IL-10 Promoter Polymorphisms on Disease Susceptibility in Indian SLE Patients.” Lupus, vol. 29, no. 6, 2020, pp. 587–598., doi:10.1177/0961203320913619.
  Recombinant Human IL-18  Wu, Zhijie, et al. “Interleukin-18 Plays a Dispensable Role in Murine and Likely Also Human Bone Marrow Failure.” Experimental Hematology, vol. 69, 2019, doi:10.1016/j.exphem.2018.10.003.