QuickSwitch™ Quant HLA-A*24:02 Tetramer Kit-BV421

Specifications:
Background
Contact us with any specific questions you may have!
Description
QuickSwitch™ Tetramer Kit utilizes a patented technique for exchanging up to ten peptides on an MHC class I tetramer. Reduce time and cost with this kit to create your own custom tetramers or to test which peptide sequence has the best peptide-MHC binding affinity. This kit can be used for screening multiple peptides or to create a small amount of your own custom Tetramer in house. The resulting custom tetramers can be used for multiple applications including screening immunogenic peptides, neoantigen discovery, and many other assays downstream from in-silico selection.
FAQs for Peptide Exchange using QuickSwitch™ Kit
Target: | Custom |
---|---|
Product Type: | Tetramer |
Size: | 1 kit |
Application: | FCM |
Research Area / Disease: | Immune Monitoring, Immunology |
Class: | Class I |
Allele: | HLA-A*24:02 |
Peptide Sequence: | Custom |
Conjugate: | BV421 |
Species Reactivity: | Human |
Specificity: | Custom |
Citations
Ogura, H., Gohda, J., Lu, X. et al. Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19. Nat Commun 13, 7063 (2022). https://doi.org/10.1038/s41467-022-34655-1
Marc C Delcommenne, Olga Hrytsenko, Cynthia Tram, Genevieve Weir and Marianne M. Stanford. (2017) The QuickSwitch Quant HLA-A*02:01 Tetramer Kit can be used for determining the biological activity of a cancer vaccine. J Immunol, 198 (1 Supplement) 79.27; https://www.jimmunol.org/content/198/1_Supplement/79.27
Kula, T., Dezfulian, M. H., Wang, C. I., Abdelfattah, N. S., Hartman, Z. C., Wucherpfennig, K. W., … Elledge, S. J. (2019). T-Scan: A Genome-wide Method for the Systematic Discovery of T Cell Epitopes. Cell, 178(4). DOI: 10.1016/j.cell.2019.07.009
Christof C. Smith, Shengjie Chai, Amber R. Washington, Samuel J. Lee, Elisa Landoni, Kevin Field, Jason Garness, Lisa M. Bixby, Sara R. Selitsky, Joel S. Parker, Barbara Savoldo, Jonathan S. Serody, and Benjamin G. Vincent (2019) Machine-Learning Prediction of Tumor Antigen Immunogenicity in the Selection of Therapeutic Epitopes dok: 10.1158/2326-6066.CIR-1900155
Poluektov, Y., Daftarian, P., & Delcommenne, M. C. (2020). Assessment of SARS-CoV-2 Specific CD4( ) and CD8 ( ) T Cell Responses Using MHC Class I and II Tetramers. Biorxiv. doi:10.1101/2020.07.08.194209