Anti-LC3 pAb (Polyclonal Antibody)

LC3 Polyclonal Antibody.

Specifications:

Description

This LC3 antibody is validated for multiple applications (WB, IHC, ICC and IP) and has over 85 citations, including in research papers with more than 1,000 citations (Saitoh T et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-8 (2008)). This is a polyclonal antibody of 100 ul that is raised in rabbit and is reactive with human, hamster, mouse, rat.

 

Target: LC3
Product Type: Antibody
Size: 100 µl
Application: FCM, ICC, IHC, IP, WB
Research Area / Disease: Autophagy
Conjugate: Unlabeled
Antibody Type: Polyclonal
Isotype: IgG
Immunogen: Recombinant human LC3 (MAP1LC3B :1-120 a.a.)
Host Species: Rabbit
Species Reactivity: Hamster, Human, Mouse, Rat
Source: This antibody was purified from rabbit serum using protein A agarose. The rabbit was immunized with the recombinant human LC3 [MAP1LC3B (1-120 aa)].
Reactivity: This antibody reacts with LC3 (MAP1LC3A, B, C) on Western blotting, Immunoprecipitation, Immunohistochemistry, Immunocytochemistry and Flow cytometry. It does not react with GABARAP and GATE-16.
Gene ID Human:

81631, 84557, 440730

Gene ID Mouse:

67443,  66734

Gene ID Rat:

64862362245

Storage Temperature: -20°C
Regulatory Statement: For Research Use Only. Not for use in diagnostic procedures.

Citations

  1. Wu, Z., Xu, Z., Zhou, X. et al. sGRP78 enhances selective autophagy of monomeric TLR4 to regulate myeloid cell death. Cell Death Dis 13, 587 (2022). https://doi.org/10.1038/s41419-022-05048-5
  2. Yu, F., Zhang, Q., Liu, H. et al. Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov 8, 40 (2022). https://doi.org/10.1038/s41421-022-00390-7
  3. Zhou, D., Borsa, M., Puleston, D.J. et al. Mapping autophagosome contents identifies interleukin-7 receptor-α as a key cargo modulating CD4+ T cell proliferation. Nat Commun 13, 5174 (2022). https://doi.org/10.1038/s41467-022-32718-x
  4. Munson, M.J., Mathai, B.J., Ng, M.Y.W. et al. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat Commun 12, 6101 (2021). https://doi.org/10.1038/s41467-021-26331-7
  5. Nahata, M., Mogami, S., Sekine, H. et al. Bcl-2-dependent autophagy disruption during aging impairs amino acid utilization that is restored by hochuekkito. npj Aging Mech Dis 7, 13 (2021). https://doi.org/10.1038/s41514-021-00065-8
  6. Gianni’, M., Goracci, L., Schlaefli, A. et al. Role of cardiolipins, mitochondria, and autophagy in the differentiation process activated by all-trans retinoic acid in acute promyelocytic leukemia. Cell Death Dis 13, 30 (2022). https://doi.org/10.1038/s41419-021-04476-z
  7. Ng, M.Y.W., Charsou, C., Lapao, A. et al. The cholesterol transport protein GRAMD1C regulates autophagy initiation and mitochondrial bioenergetics. Nat Commun 13, 6283 (2022). https://doi.org/10.1038/s41467-022-33933-2
  8. Gomez-Sintes, R., Xin, Q., Jimenez-Loygorri, J.I. et al. Targeting retinoic acid receptor alpha-corepressor interaction activates chaperone-mediated autophagy and protects against retinal degeneration. Nat Commun 13, 4220 (2022). https://doi.org/10.1038/s41467-022-31869-1
  9. Sun, Y., Berleth, N., Wu, W. et al. Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells. Cell Death Dis 12, 1028 (2021). https://doi.org/10.1038/s41419-021-04306-2
  10. Silwal, P., Kim, J.K., Jeon, S.M. et al. Mitofusin-2 boosts innate immunity through the maintenance of aerobic glycolysis and activation of xenophagy in mice. Commun Biol 4, 548 (2021). https://doi.org/10.1038/s42003-021-02073-6
  11. Peng, Sz., Chen, Xh., Chen, Sj. et al. Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates. Nat Commun 12, 5989 (2021). https://www.nature.com/articles/s41467-021-26295-8
  12. Deitersen, J., Berning, L., Stuhldreier, F. et al. High-throughput screening for natural compound-based autophagy modulators reveals novel chemotherapeutic mode of action for arzanol. Cell Death Dis 12, 560 (2021). https://doi.org/10.1038/s41419-021-03830-5
  13. Ash, D., Sudhahar, V., Youn, SW. et al. The P-type ATPase transporter ATP7A promotes angiogenesis by limiting autophagic degradation of VEGFR2. Nat Commun 12, 3091 (2021). https://doi.org/10.1038/s41467-021-23408-1
  14. Bode, M.F., Schmedes, C.M., Egnatz, G.J. et al. Cell type-specific roles of PAR1 in Coxsackievirus B3 infection. Sci Rep 11, 14264 (2021). https://doi.org/10.1038/s41598-021-93759-8
  15. Kasahara, Y., Osuka, S., Takasaki, N. et al. Primate-specific POTE-actin gene could play a role in human folliculogenesis by controlling the proliferation of granulosa cells. Cell Death Discov. 7, 186 (2021). https://doi.org/10.1038/s41420-021-00566-1
  16. Jang H et al. The Tumor Suppressor, p53, Negatively Regulates Non-Canonical NF-κB Signaling Through miRNAInduced Silencing of NF-κB-Inducing Kinase. Mol Cells. 43, 23-33 (2020)
  17. Leidal, A.M., Huang, H.H., Marsh, T. et al. The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 22, 187–199 (2020).
  18. Wei R  et al.  Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep. 9, 10366 (2019)
  19. Nakamura T et al. Soluble Lytic Transglycosylase SLT of Francisella Novicida Is Involved in Intracellular Growth and Immune Suppression. PLoS One. 14, e0226778 (2019)rn
  20. Lu SZ et al. Suppression of astrocytic autophagy by αB-crystallin contributes to α-synuclein inclusion formation. Transl Neurodegener. 8, 3 (2019)rn
  21. Ma B et al. The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression. Nat Commun. 10, 1034 (2019)
  22. Horibe A et al. Ethanol-Induced Autophagy in Sertoli Cells Is Specifically Marked at Androgen-Dependent Stages of the Spermatogenic Cycle: Potential Mechanisms and Implications. Int J Mol Sci. 20, pii: E184 (2019)
  23. Schulthess J et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages. Immunity. 50, 432-445.e7 (2019)
  24. Scotto Rosato A et al. TRPML1 Links Lysosomal Calcium to Autophagosome Biogenesis Through the Activation of the CaMKKβ/VPS34 Pathway. Nat Commun. 10, 5630 (2019)
  25. Hsu YH et al. Traffic-related particulate matter exposure induces nephrotoxicity in vitro and in vivo. Free Radic Biol Med. 135, 235-244 (2019)
  26. Sun Y et al. Ischemic Postconditioning Alleviates Cerebral Ischemia-Reperfusion Injury Through Activating Autophagy During Early Reperfusion in Rats. Neurochem Res. 43, 1826-1840 (2018)
  27. Skah S et al. cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53. Oncotarget 9, 30434–30449 (2018)
  28. Phadwal K et al. Spermine increases acetylation of tubulins and facilitates autophagic degradation of prion aggregates. Sci Rep. 8, 10004 (2018)
  29. Mohamud Y et al. CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation. Cell Death Differ. (2018) In pre
  30. Mori H et al. Induction of selective autophagy in cells replicating hepatitis C virus genome. J Gen Virol. 99, 1643-1657 (2018)
  31. Kim JK et al. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat Commun. 9, 4184 (2018)
  32. Janssen AFJ et al. Probing aggrephagy using chemically-induced protein aggregates. Nat Commun. 9, 4245 (2018)
  33. Jiao YN et al. Marsdenia tenacissima extract induces apoptosis and suppresses autophagy through ERK activation in lung cancer cells. Cancer Cell Int. 18, 149 (2018)
  34. Chen B et al. Comparative Study of Different Diets-Induced NAFLD Models of Zebrafish. Front Endocrinol 9, 366 (2018)
  35. Abdullah A et al. STING-mediated type-I interferons contribute to the neuroinflammatory process and detrimental effects following traumatic brain injury. J Neuroinflammation. 15 323 (2018)
  36. Alvarez-Garcia O et al. FOXO are required for intervertebral disk homeostasis during aging and their deficiency promotes disk degeneration. Aging Cell. 17, e12800 (2018)
  37. Ashraf NS et al. Citalopram reduces aggregation of ATXN3 in a YAC transgenic mouse model of Machado-Joseph disease. Mol Neurobiol. (2018) In press.
  38. Bak DH et al. Anti‑apoptotic effects of human placental hydrolysate against hepatocyte toxicity in vivo and in vitro. Int J Mol Med. 42, 2569-2583 (2018)Härtlova A et al. LRRK2 is a negative regulator of Mycobacterium tuberculosis phagosome maturation in macrophages. EMBO J. 37, e98694 (2018)
  39. Hagio-Izaki K et al. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus. BMC Cell Biol. 19, 18 (2018)
  40. Katagiri N, Kuroda T, Kishimoto H, Hayashi Y, Kumazawa T, Kimura K. The nucleolar protein nucleophosmin is essential for autophagy induced by inhibiting Pol I transcription. Sci Rep. 2015;5:8903.
  41. Campbell-valois FX, Sachse M, Sansonetti PJ, Parsot C. Escape of Actively Secreting Shigella flexneri from ATG8/LC3-Positive Vacuoles Formed during Cell-To-Cell Spread Is Facilitated by IcsB and VirA. MBio. 2015;6(3):e02567-14.
  42. Bak DH, Zhang E, Yi MH, et al. High ω3-polyunsaturated fatty acids in fat-1 mice prevent streptozotocin-induced Purkinje cell degeneration through BDNF-mediated autophagy. Sci Rep. 2015;5:15465.
  43. Valapala M, Wilson C, Hose S, et al. Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy. 2014;10(3):480-96.
  44. Zhai Z, Wu F, Dong F, et al. Human autophagy gene ATG16L1 is post-transcriptionally regulated by MIR142-3p. Autophagy. 2014;10(3):468-79.
  45. Shao W, Espenshade PJ. Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). J Biol Chem. 2014;289(11):7547-57.
  46. Kim C, Bergelson JM. Echovirus 7 entry into polarized caco-2 intestinal epithelial cells involves core components of the autophagy machinery. J Virol. 2014;88(1):434-43.
  47. Kim JH, Hong SK, Wu PK, Richards AL, Jackson WT, Park JI. Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels. Exp Cell Res. 2014;327(2):340-52.
  48. Wang BS, Liu YZ, Yang Y, et al. Autophagy negatively regulates cancer cell proliferation via selectively targeting VPRBP. Clin Sci. 2013;124(3):203-14.
  49. Zheng Y, Kielian M. Imaging of the alphavirus capsid protein during virus replication. J Virol. 2013;87(17):9579-89.
  50. Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741-50.
  51. Ciarcia R, Damiano S, Montagnaro S, et al. Combined effects of PI3K and SRC kinase inhibitors with imatinib on intracellular calcium levels, autophagy, and apoptosis in CML-PBL cells. Cell Cycle. 2013;12(17):2839-48.
  52. Zhang X, Garbett K, Veeraraghavalu K, et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci. 2012;32(25):8633-48.
  53. Yan J et al. Methyl-β-cyclodextrin induces programmed cell death in chronic myeloid leukemia cells and, combined with imatinib, produces a synergistic downregulation of ERK/SPK1 signaling. Anticancer Drugs. 23, 22-31 (2012),
  54. Yu X et al. Differential degradation of full-length and cleaved ataxin-7 fragments in a novel stable inducible SCA7 model. J Mol Neurosci. 47, 219-33 (2012)
  55. Yu X, Ajayi A, Boga NR, Ström AL. Differential degradation of full-length and cleaved ataxin-7 fragments in a novel stable inducible SCA7 model. J Mol Neurosci. 2012;47(2):219-33.
  56. Takaesu G et al. TGFβ-activated kinase 1 (TAK1)-binding proteins (TAB) 2 and 3 negatively regulate autophagy. J Biochem. 151, 157-66 (2012),
  57. Starr T et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe. 11, 33-45 (2012),
  58. Seillier M et al. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ. 19, 1525-35 (2012),
  59. Miranda S et al. Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions. J Cell Physiol. 227, 2352-62 (2012),
  60. Kaini RR et al. Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells. Prostate 72, 1412-22 (2012),
  61. Niizuma S et al. Effect of persistent activation of phosphoinositide 3-kinase on heart. Life Sci. 90, 619-28 (2012),
  62. Kaminskyy VO et al. Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy 8, 1032-44 (2012),
  63. Xu T et al. Modulation of autophagic activity by extracellular pH. Autophagy 7, 1316-22 (2011),
  64. Taguwa S et al. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J Virol. 85, 13185-94 (2011),
  65. Wu SY et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 13, 1171-82 (2011),
  66. Wu YN et al. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials. 32, 4565-73 (2011),
  67. Rasmussen SB et al. Activation of autophagy by α-herpesviruses in myeloid cells is mediated by cytoplasmic viral DNA through a mechanism dependent on stimulator of IFN genes. J Immunol. 187, 5268-76 (2011),
  68. Otomo T, Higaki K, Nanba E, Ozono K, Sakai N. Lysosomal storage causes cellular dysfunction in mucolipidosis II skin fibroblasts. J Biol Chem. 2011;286(40):35283-90.
  69. Pan JA et al. Inhibition of protein degradation induces apoptosis through a microtubule-associated protein 1 light chain 3-mediated activation of caspase-8 at intracellular membranes. Mol Cell Biol. 31, 3158-70 (2011),
  70. Lee EJ and Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 7, 689-95 (2011),
  71. Lee EJ, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 2011;7(7):689-95.
  72. Otomo T et al. Lysosomal storage causes cellular dysfunction in mucolipidosis II skin fibroblasts. J Biol Chem. 286, 35283-90 (2011),
  73. Katona I et al. Distinct pathogenic processes between Fig4-deficient motor and sensory neurons. Eur J Neurosci. 33, 1401-10 (2011),
  74. Hasui K et al. Enhanced Autophagy and Reduced Expression of Cathepsin D Are Related to Autophagic Cell Death in Epstein-Barr Virus-Associated Nasal Natural Killer/T-Cell Lymphomas: An Immunohistochemical Analysis of Beclin-1, LC3, Mitochondria (AE1), and Cathepsin D in Nasopharyngeal Lymphomas. Acta Histochem Cytochem. 44, 119-31 (2011),
  75. Arsov I, Adebayo A, Kucerova-levisohn M, et al. A role for autophagic protein beclin 1 early in lymphocyte development. J Immunol. 2011;186(4):2201-9.
  76. Huang Y et al. PML-RARα enhances constitutive autophagic activity through inhibiting the Akt/mTOR pathway. Autophagy 7, 1132-44 (2011),
  77. Ishii Y, Papa L, Bahadur U, et al. Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to a proapoptotic unfolded protein response. Clin Cancer Res. 2011;17(8):2292-300.
  78. Blanchet FP, Moris A, Nikolic DS, et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity. 2010;32(5):654-69.

References

  1. Wan G, et al., J Biol Chem, 283, 21540 (2008) : WB
  2. Ohne Y, et al., J Biol Chem, 283, 31861 (2008) : WB
  3. Saitoh T, et al., Nature, 456, 264 (2008) : WB
  4. Sasnauskiene A, et al., Apoptosis, 14, 276 (2009) : WB, IC
  5. Kimura S, et al., Methods Enzymol, 452, 1 (2009) : WB
  6. Chung JW, et al., PLoS Pathog, 5, e1000561 (2009) : IC
  7. Yoshikawa Y, et al., Nat Cell Biol, 11, 1233 (2009) : WB
  8. Wang J, et al., J Clin Exp Hematop, 49, 97 (2009) : IHC-P
  9. Ost A, et al., Mol Med, 16, 235 (2010) : IC
  10. Blanchet FP, et al., Immunity, 32, 654 (2010) : WB
  11. Kaushal S, et al., Exp Biol Med (Maywood), 235, 700 (2010) : WB
  12. Tanida I, et al., Methods Mol Biol, 648, 193 (2010) : WB
  13. Akematsu T, et al., Autophagy, 6, 901 (2010) : WB
  14. Tian F, et al., Autophagy, 6, 1107 (2010) : WB, IHC
  15. Tabata K, et al., Mol Biol Cell, 21, 4162 (2010) : WB
  16. Kaminskyy V, et al., Autophagy, 7, 83 (2011) : WB, IC, FCM
  17. Kobayashi H, et al., Mol Genet Metab, 102, 170 (2011) : IHC-P
  18. Chen SY, et al., Autophagy, 7, 217 (2011) : WB
  19. Sakamoto Y, et al., Cancer Sci, 102, 799 (2011) : WB, IC
  20. Torres S, et al., Mol Cancer Ther, 10, 90 (2011) : WB
  21. Lorente M, et al., Cell Death Differ, 18, 959 (2011) : WB
  22. Arsov I, et al., J Immunol, 186, 2201 (2011) : IC
  23. Bodemann BO, et al., Cell, 144, 253 (2011) : IC
  24. Salazar M, et al., Methods Enzymol, 489, 297 (2011) : WB, IC
  25. Ishii Y, et al., Clin Cancer Res, 17, 2292 (2011) : WB
  26. Katona I, et al., Eur J Neurosci, 33, 1401 (2011) : IHC
  27. Wu YN, et al., Biomaterials, 32, 4565 (2011) : IC
  28. Lee EJ, et al., Autophagy, 7, 689 (2011) : WB
  29. Pan JA, et al., Mol Cell Biol, 31, 3158 (2011) : WB
  30. Huang Y, et al., Autophagy, 7, 1132 (2011) : WB
  31. Hasui K, et al., Acta Histochem Cytochem, 44, 119 (2011) : IHC-P
  32. Miranda S, et al., J Cell Physiol, 227, 2352 (2012) : WB
  33. Otomo T, et al., J Biol Chem, 286, 35283 (2011) : WB
  34. Yan J, et al., Anticancer Drugs, 23, 22 (2012) : IC, WB
  35. Takaesu G, et al., J Biochem, 151, 157 (2012) : WB
  36. Taguwa S, et al., J Virol, 85, 13185 (2011) : WB, IC
  37. Xu T, et al., Autophagy, 7, 1316 (2011) : WB
  38. Rasmussen SB, et al., J Immunol, 187, 5268 (2011) : WB, IC
  39. Wu SY, et al., Neoplasia, 13, 1171 (2011) : WB
  40. Starr T, et al., Cell Host Microbe, 11, 33 (2012) : WB
  41. Kaini RR, et al., Prostate, 72, 1412 (2012) : WB
  42. Yu X, et al., J Mol Neurosci, 47, 219 (2012) : WB
  43. Niizuma S, et al., Life Sci, 90, 619 (2012) : WB
  44. Seillier M, et al., Cell Death Differ, 19, 1525 (2012) : IC
  45. Kaminskyy V, et al., Autophagy, 8, 1032 (2012) : WB, IC
  46. Gafni J, et al., J Neurosci, 32, 7454 (2012) : WB, IHC-P
  47. Sugimoto M, et al., G3 (Bethesda), 2, 1077 (2012) : WB
  48. Kang YA, et al., Mol Cell Biol, 32, 226 (2012) : WB
  49. Tabata, K., et al., Mol. Biol. Cell 21, 4162-4172 (2010)
  50. Kiyono, K., et al., Cancer Res. 69, 8844-8852 (2009)
  51. Saitoh, T., et al., Nature456, 264-268 (2008)
  52. Wan, G., et al., J. Biol. Chem.283, 21540-21549 (2008)
  53. Ohneet, Y., et al., J. Biol. Chem. 283, 31861-31870 (2008)
  54. Kabeya, Y., et al., J. Cell Sci. 117, 2805-2812 (2004)
  55. Mizushima, N., et al., Mol. Biol. Cell 15, 1101-1111 (2004)
  56. Mizushima, N., et al., J. Cell Biol. 152, 657-667 (2001)
  57. Kabeya, Y., et al., EMBO J. 19, 5720-5728 (2000)