Anti-LC3 pAb

  • Applications
    • FCM
    • ICC
    • IHC
    • IP
    • WB
  • Target LC3
  • Host Species Rabbit
  • Species Reactivities Hamster, Human, Mouse, Rat
  • Code # PM036
  • Size 100 μl
  • Price
    $359.13
Specifications

Alternative Names

microtubule-associated protein 1 light chain 3 alpha, MAP1BLC3, MAP1ALC3, LC3, LC3A, ATG8E

Background

Macroautophagy mediates the bulk degradation of cytoplasmic components. These components are delivered to lysosomes via autophagosomes. The microtubule-associated protein 1 light chain 3 (LC3), a homologue of yeast Atg8 (Aut7/Apg8), localizes to autophagosomal membranes after post-translational modifications. The C-terminal fragment of LC3 is cleaved immediately following synthesis to yield a cytosolic form called LC3-I (18 kDa). A subpopulation of LC3-I is further converted to an autophagosome-associating form, LC3-II (16 kDa). This antibody can detect both forms of LC3.
  • Antibody Type:
    Polyclonal
  • Application:
    FCM, ICC, IHC, IP, WB
  • Conjugate:
    Unlabeled
  • Description:

    This LC3 antibody is validated for multiple applications (WB, IHC, ICC and IP) and has over 85 citations, including in research papers with more than 1,000 citations (Saitoh T et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-8 (2008)). This is a polyclonal antibody of 100 ul that is raised in rabbit and is reactive with human, hamster, mouse, rat.

     

  • Gene ID (Human):
  • Gene ID (Mouse):
  • Gene ID (Rat):
  • Host Species:
    Rabbit
  • Immunogen:
    Recombinant human LC3 (MAP1LC3B :1-120 a.a.)
  • Isotype:
    IgG
  • Product Type:
    Antibody
  • Reactivity:
    This antibody reacts with LC3 (MAP1LC3A, B, C) on Western blotting, Immunoprecipitation, Immunohistochemistry, Immunocytochemistry and Flow cytometry. It does not react with GABARAP and GATE-16.
  • Research Area:
    Autophagy
  • Short Description:

    LC3 Polyclonal Antibody.

  • Size:
    100 μl
  • Species Reactivity:
    Hamster, Human, Mouse, Rat
  • Storage Temperature:
    -20°C
  • Target:
    LC3
Citations
  1. Hasui K et al. Enhanced Autophagy and Reduced Expression of Cathepsin D Are Related to Autophagic Cell Death in Epstein-Barr Virus-Associated Nasal Natural Killer/T-Cell Lymphomas: An Immunohistochemical Analysis of Beclin-1, LC3, Mitochondria (AE-1), and Cathepsin D in Nasopharyngeal Lymphomas. Acta Histochem Cytochem. 44, 119-31 (2011),
  2. Huang Y et al. PML-RARα enhances constitutive autophagic activity through inhibiting the Akt/mTOR pathway. Autophagy 7, 1132-44 (2011),
  3. Kaini RR et al. Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells. Prostate 72, 1412-22 (2012),
  4. Kaminskyy VO et al. Suppression of basal autophagy reduces lung cancer cell proliferation and enhances caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy 8, 1032-44 (2012),
  5. Katona I et al. Distinct pathogenic processes between Fig4-deficient motor and sensory neurons. Eur J Neurosci. 33, 1401-10 (2011),
  6. Lee EJ and Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 7, 689-95 (2011),
  7. Miranda S et al. Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions. J Cell Physiol. 227, 2352-62 (2012),
  8. Niizuma S et al. Effect of persistent activation of phosphoinositide 3-kinase on heart. Life Sci. 90, 619-28 (2012),
  9. Otomo T et al. Lysosomal storage causes cellular dysfunction in mucolipidosis II skin fibroblasts. J Biol Chem. 286, 35283-90 (2011),
  10. Pan JA et al. Inhibition of protein degradation induces apoptosis through a microtubule-associated protein 1 light chain 3-mediated activation of caspase-8 at intracellular membranes. Mol Cell Biol. 31, 3158-70 (2011),
  11. Rasmussen SB et al. Activation of autophagy by α-herpesviruses in myeloid cells is mediated by cytoplasmic viral DNA through a mechanism dependent on stimulator of IFN genes. J Immunol. 187, 5268-76 (2011),
  12. Seillier M et al. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ. 19, 1525-35 (2012),
  13. Starr T et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe. 11, 33-45 (2012),
  14. Taguwa S et al. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C virus. J Virol. 85, 13185-94 (2011),
  15. Takaesu G et al. TGFβ-activated kinase 1 (TAK1)-binding proteins (TAB) 2 and 3 negatively regulate autophagy. J Biochem. 151, 157-66 (2012),
  16. Wu SY et al. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 13, 1171-82 (2011),
  17. Wu YN et al. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials. 32, 4565-73 (2011),
  18. Xu T et al. Modulation of autophagic activity by extracellular pH. Autophagy 7, 1316-22 (2011),
  19. Yan J et al. Methyl-β-cyclodextrin induces programmed cell death in chronic myeloid leukemia cells and, combined with imatinib, produces a synergistic downregulation of ERK/SPK1 signaling. Anticancer Drugs. 23, 22-31 (2012),
  20. Yu X et al. Differential degradation of full-length and cleaved ataxin-7 fragments in a novel stable inducible SCA7 model. J Mol Neurosci. 47, 219-33 (2012) 
  21. Wan G, et al., J Biol Chem, 283, 21540 (2008) : WB
  22. Ohne Y, et al., J Biol Chem, 283, 31861 (2008) : WB
  23. Saitoh T, et al., Nature, 456, 264 (2008) : WB
  24. Sasnauskiene A, et al., Apoptosis, 14, 276 (2009) : WB, IC
  25. Kimura S, et al., Methods Enzymol, 452, 1 (2009) : WB
  26. Chung JW, et al., PLoS Pathog, 5, e1000561 (2009) : IC
  27. Yoshikawa Y, et al., Nat Cell Biol, 11, 1233 (2009) : WB
  28. Wang J, et al., J Clin Exp Hematop, 49, 97 (2009) : IHC-P
  29. Ost A, et al., Mol Med, 16, 235 (2010) : IC
  30. Blanchet FP, et al., Immunity, 32, 654 (2010) : WB
  31. Kaushal S, et al., Exp Biol Med (Maywood), 235, 700 (2010) : WB
  32. Tanida I, et al., Methods Mol Biol, 648, 193 (2010) : WB
  33. Akematsu T, et al., Autophagy, 6, 901 (2010) : WB
  34. Tian F, et al., Autophagy, 6, 1107 (2010) : WB, IHC
  35. Tabata K, et al., Mol Biol Cell, 21, 4162 (2010) : WB
  36. Kaminskyy V, et al., Autophagy, 7, 83 (2011) : WB, IC, FCM
  37. Kobayashi H, et al., Mol Genet Metab, 102, 170 (2011) : IHC-P
  38. Chen SY, et al., Autophagy, 7, 217 (2011) : WB
  39. Sakamoto Y, et al., Cancer Sci, 102, 799 (2011) : WB, IC
  40. Torres S, et al., Mol Cancer Ther, 10, 90 (2011) : WB
  41. Lorente M, et al., Cell Death Differ, 18, 959 (2011) : WB
  42. Arsov I, et al., J Immunol, 186, 2201 (2011) : IC
  43. Bodemann BO, et al., Cell, 144, 253 (2011) : IC
  44. Salazar M, et al., Methods Enzymol, 489, 297 (2011) : WB, IC
  45. Ishii Y, et al., Clin Cancer Res, 17, 2292 (2011) : WB
  46. Katona I, et al., Eur J Neurosci, 33, 1401 (2011) : IHC
  47. Wu YN, et al., Biomaterials, 32, 4565 (2011) : IC
  48. Lee EJ, et al., Autophagy, 7, 689 (2011) : WB
  49. Pan JA, et al., Mol Cell Biol, 31, 3158 (2011) : WB
  50. Huang Y, et al., Autophagy, 7, 1132 (2011) : WB
  51. Hasui K, et al., Acta Histochem Cytochem, 44, 119 (2011) : IHC-P
  52. Miranda S, et al., J Cell Physiol, 227, 2352 (2012) : WB
  53. Otomo T, et al., J Biol Chem, 286, 35283 (2011) : WB
  54. Yan J, et al., Anticancer Drugs, 23, 22 (2012) : IC, WB
  55. Takaesu G, et al., J Biochem, 151, 157 (2012) : WB
  56. Taguwa S, et al., J Virol, 85, 13185 (2011) : WB, IC
  57. Xu T, et al., Autophagy, 7, 1316 (2011) : WB
  58. Rasmussen SB, et al., J Immunol, 187, 5268 (2011) : WB, IC
  59. Wu SY, et al., Neoplasia, 13, 1171 (2011) : WB
  60. Starr T, et al., Cell Host Microbe, 11, 33 (2012) : WB
  61. Kaini RR, et al., Prostate, 72, 1412 (2012) : WB
  62. Yu X, et al., J Mol Neurosci, 47, 219 (2012) : WB
  63. Niizuma S, et al., Life Sci, 90, 619 (2012) : WB
  64. Seillier M, et al., Cell Death Differ, 19, 1525 (2012) : IC
  65. Kaminskyy V, et al., Autophagy, 8, 1032 (2012) : WB, IC
  66. Gafni J, et al., J Neurosci, 32, 7454 (2012) : WB, IHC-P
  67. Sugimoto M, et al., G3 (Bethesda), 2, 1077 (2012) : WB
  68. Kang YA, et al., Mol Cell Biol, 32, 226 (2012) : WB
  69. Bak DH, Zhang E, Yi MH, et al. High ω3-polyunsaturated fatty acids in fat-1 mice prevent streptozotocin-induced Purkinje cell degeneration through BDNF-mediated autophagy. Sci Rep. 2015;5:15465.
  70. Campbell-valois FX, Sachse M, Sansonetti PJ, Parsot C. Escape of Actively Secreting Shigella flexneri from ATG8/LC3-Positive Vacuoles Formed during Cell-To-Cell Spread Is Facilitated by IcsB and VirA. MBio. 2015;6(3):e02567-14.
  71. Katagiri N, Kuroda T, Kishimoto H, Hayashi Y, Kumazawa T, Kimura K. The nucleolar protein nucleophosmin is essential for autophagy induced by inhibiting Pol I transcription. Sci Rep. 2015;5:8903.
  72. Kim JH, Hong SK, Wu PK, Richards AL, Jackson WT, Park JI. Raf/MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at expression levels. Exp Cell Res. 2014;327(2):340-52.
  73. Shao W, Espenshade PJ. Sterol regulatory element-binding protein (SREBP) cleavage regulates Golgi-to-endoplasmic reticulum recycling of SREBP cleavage-activating protein (SCAP). J Biol Chem. 2014;289(11):7547-57.
  74. Valapala M, Wilson C, Hose S, et al. Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling. Autophagy. 2014;10(3):480-96.
  75. Zhai Z, Wu F, Dong F, et al. Human autophagy gene ATG16L1 is post-transcriptionally regulated by MIR142-3p. Autophagy. 2014;10(3):468-79.
  76. Kim C, Bergelson JM. Echovirus 7 entry into polarized caco-2 intestinal epithelial cells involves core components of the autophagy machinery. J Virol. 2014;88(1):434-43.
  77. Zheng Y, Kielian M. Imaging of the alphavirus capsid protein during virus replication. J Virol. 2013;87(17):9579-89.
  78. Ciarcia R, Damiano S, Montagnaro S, et al. Combined effects of PI3K and SRC kinase inhibitors with imatinib on intracellular calcium levels, autophagy, and apoptosis in CML-PBL cells. Cell Cycle. 2013;12(17):2839-48.
  79. Russell RC, Tian Y, Yuan H, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741-50.
  80. Wang BS, Liu YZ, Yang Y, et al. Autophagy negatively regulates cancer cell proliferation via selectively targeting VPRBP. Clin Sci. 2013;124(3):203-14.
  81. Zhang X, Garbett K, Veeraraghavalu K, et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci. 2012;32(25):8633-48.
  82. Yu X, Ajayi A, Boga NR, Ström AL. Differential degradation of full-length and cleaved ataxin-7 fragments in a novel stable inducible SCA7 model. J Mol Neurosci. 2012;47(2):219-33.
  83. Otomo T, Higaki K, Nanba E, Ozono K, Sakai N. Lysosomal storage causes cellular dysfunction in mucolipidosis II skin fibroblasts. J Biol Chem. 2011;286(40):35283-90.
  84. Lee EJ, Tournier C. The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy. 2011;7(7):689-95.
  85. Ishii Y, Papa L, Bahadur U, et al. Bortezomib enhances the efficacy of fulvestrant by amplifying the aggregation of the estrogen receptor, which leads to a proapoptotic unfolded protein response. Clin Cancer Res. 2011;17(8):2292-300.
  86. Arsov I, Adebayo A, Kucerova-levisohn M, et al. A role for autophagic protein beclin 1 early in lymphocyte development. J Immunol. 2011;186(4):2201-9.
  87. Blanchet FP, Moris A, Nikolic DS, et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity. 2010;32(5):654-69.
  88. Williams T, Forsberg LJ, Viollet B, Brenman JE. Basal autophagy induction without AMP-activated protein kinase under low glucose conditions. Autophagy. 2009;5(8):1155-65.

 

References
  1. Tabata, K., et al., Mol. Biol. Cell 21, 4162-4172 (2010)
  2. Kiyono, K., et al., Cancer Res. 69, 8844-8852 (2009)
  3. Saitoh, T., et al., Nature456, 264-268 (2008)
  4. Wan, G., et al., J. Biol. Chem.283, 21540-21549 (2008)
  5. Ohneet, Y., et al., J. Biol. Chem. 283, 31861-31870 (2008)
  6. Kabeya, Y., et al., J. Cell Sci. 117, 2805-2812 (2004)
  7. Mizushima, N., et al., Mol. Biol. Cell 15, 1101-1111 (2004)
  8. Mizushima, N., et al., J. Cell Biol. 152, 657-667 (2001)
  9. Kabeya, Y., et al., EMBO J. 19, 5720-5728 (2000)