Afamin/Wnt3a CM

Specifications:

Description

Serum free conditioned medium including Wnt3a-Afamin complex for intestinal organoid cell culture.

Note Regarding Intellectual Property Rights:

When culturing organoids, or stem cells, or other tissues, if you are to use this product (J2-001 Afamin/Wnt3a CM) in combination with another factor or factors (hereinafter “factors”), a third party may have patent rights concerning the use or other application of the factors concerned. MBL does not offer any non-infringement warranty for J2-001 Afamin/Wnt3a CM when used or otherwise applied in combination with other factors. Therefore, if you intend to use this product in combination with other factors, please check with your organization’s division or advisors responsible for intellectual property rights or with your research agency before using this product with other factors.

Formerly Product Code: J-ORMW301R

Product Type: Cell Culture
Size: 10 mL
Species Reactivity: Human, Mouse
Regulatory Statement: For Research Use Only. Not for use in diagnostic procedures.

References

  1. Li, Youxian, et al. “Identification of trypsin-degrading commensals in the large intestine.” Nature 609.7927 (2022): 582-589.
  2. Ryosaka, Makoto, Shin-Ichi Mae, and Kenji Osafune. “Protocol for the generation and expansion of human iPS cell-derived ureteric bud organoids.” STAR protocols 3.3 (2022): 101484.
  3. Ikezawa, K., Ekawa, T., Hasegawa, S., Kai, Y., Takada, R., Yamai, T., Fukutake, N., Ogawa, H., Akazawa, T., Mizote, Y., Tatsumi, K., Nagata, S., Asukai, K., Takahashi, H., Ohkawa, K., & Tahara, H. (2022). Establishment of organoids using residual samples from saline flushes during endoscopic ultrasound-guided fine-needle aspiration in patients with pancreatic cancer. Endoscopy International Open10(01). https://doi.org/10.1055/a-1713-3404
  4. Kim, D., Yoon, Y.-J., Choi, D., Kim, J., & Lim, J.-Y. (2021). 3D organoid culture from adult salivary gland tissues as an ex vivo modeling of salivary gland morphogenesis. Frontiers in Cell and Developmental Biology9https://doi.org/10.3389/fcell.2021.698292
  5. Genshaft, A. S., Ziegler, C. G., Tzouanas, C. N., Mead, B. E., Jaeger, A. M., Navia, A. W., King, R. P., Mana, M. D., Huang, S., Mitsialis, V., Snapper, S. B., Yilmaz, Ö. H., Jacks, T., Van Humbeck, J. F., & Shalek, A. K. (2021). Live cell tagging tracking and isolation for spatial transcriptomics using photoactivatable cell dyes. Nature Communications12(1). https://doi.org/10.1038/s41467-021-25279-y
  6. Wang, Z., Guo, Y., Jin, Y., Zhang, X., Geng, H., Xie, G., Ye, D., Yu, Y., Liu, D., Zhou, D., Li, B., Luo, Y., Peng, S., & Li, J. (2021). Establishment and drug screening of patient-derived extrahepatic biliary tract carcinoma organoids. Cancer Cell International21(1). https://doi.org/10.1186/s12935-021-02219-w
  7. Wang, Z., Jin, Y., Guo, Y., Tan, Z., Zhang, X., Ye, D., Yu, Y., Peng, S., Zheng, L., & Li, J. (2021). Conversion therapy of intrahepatic cholangiocarcinoma is associated with improved prognosis and verified by a case of patient-derived organoid. Cancers13(5), 1179. https://doi.org/10.3390/cancers13051179
  8. Wang, Z., Jin, Y., Guo, Y., Tan, Z., Zhang, X., Ye, D., Yu, Y., Peng, S., Zheng, L., & Li, J. (2021). Conversion therapy of intrahepatic cholangiocarcinoma is associated with improved prognosis and verified by a case of patient-derived organoid. Cancers13(5), 1179. https://doi.org/10.3390/cancers13051179
  9. Mae, S.-I., Ryosaka, M., Sakamoto, S., Matsuse, K., Nozaki, A., Igami, M., Kabai, R., Watanabe, A., & Osafune, K. (2020). Expansion of human IPSC-derived ureteric bud organoids with repeated branching potential. Cell Reports32(4), 107963. https://doi.org/10.1016/j.celrep.2020.107963
  10. K. Miyabayashi, et al., Intraductal transplantation models of human pancreatic ductal adenocarcinoma reveal progressive transition of molecular subtypes. ,Cancer Discov. 10 (2020)[PMID: 32703770]
  11. Y. Nanki, et al., Patient-derived ovarian cancer organoids capture the genomic profiles of primary tumours applicable for drug sensitivity and resistance testing. ,Scientific Reports 28 (2020) [PMID: 32724113]
  12. S. Mae, et al., Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential. ,Cell Reports 32 (2020)[PMID: 32726627]
  13. N. Sasaki, et al., Development of a Scalable Coculture System for Gut Anaerobes and Human Colon Epithelium. , Gastroenterology 159 (2020) [PMID: 32199883]
  14. K. Nanki, et al., Somatic inflammatory gene mutations in human ulcerative colitis epithelium., Nature 577 (2020) [PMID: 31853059]
  15. S. Sugimoto, et al., Organoid Derivation and Orthotopic Xenotransplantation for Studying Human Intestinal Stem Cell Dynamics., Methods Mol Biol. 2171 (2020) [PMID: 32705652]
  16. K. Nanki, et al., Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis., Cell 174 (2018) [PMID: 30096312]
  17. S. Sugimoto, et al., Reconstruction of the human colon epithelium in vivo., Cell Stem Cell 22 (2018) [PMID: 29290616]
  18. T. Seino, et al., Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression., Cell Stem Cell 22 (2018) [PMID: 29337182]
  19. E. Mihara, et al., Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin., eLife 5 (2016) [PMID: 26902720]