Mouse IL-18 ELISA Kit
The Mouse IL-18 ELISA Kit is based on sandwich ELISA and capable of measuring mouse IL-18.


Specifications:
Description
The Mouse Il-18 ELISA Kit is based on sandwich ELISA and is capable of measuring mouse Il-18.
This kit has a high sensitivity (25.0 pg/ml) and numerous citations.
Target: | IL-18 |
---|---|
Product Type: | ELISA Kit |
Size: | 96 Wells |
Application: | ELISA |
Research Area / Disease: | Immunology |
Gene ID Human: | |
Gene ID Mouse: | |
Sensitivity: | 25.0 pg/ml |
Regulatory Statement: | For Research Use Only. Not for use in diagnostic procedures. |
Components
Microwell strips coated with anti-Mouse IL-18 antibody 8-well strip x 12 strips
Mouse IL-18 calibrator
Conjugate reagent (Peroxidase conjugate anti-mouse IL-18 monoclonal antibody)
Conjugate diluent (ready to use)
Assay diluent (ready to use)
Washing buffer
Substrate reagent (ready to use)
Stop solution (ready to use)
Citations
- Sasaki Y et al. IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity. J Exp Med. 202, 607-16 (2005)
- Banerjee S and Bond JS. Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem. 283, 31371-7 (2008)
- Rodriguez-Galan MC et al. Coexpression of IL-18 strongly attenuates IL-12-induced systemic toxicity through a rapid induction of IL-10 without affecting its antitumor capacity. J Immunol. 183, 740-8 (2009)
- Broz P et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med. 207, 1745-55 (2010),
- Costa A et al. Activation of the NLRP3 inflammasome by group B streptococci. J Immunol. 188, 1953-60 (2012),
- Paget C et al. Role of γδ T cells in α-galactosylceramide-mediated immunity. J Immunol. 188, 3928-39 (2012)
- Grung P et al. Toll or Interleukin-1 Receptor (TIR) Domain-containing adaptor inducing interferon- (TRIF)-mediated Caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem. 287, 34474-83 (2012),
- Meldrum KK et al. Profibrotic effect of interleukin-18 in HK-2 cells is dependent on stimulation of the Toll-like receptor 4 (TLR4) promoter and increased TLR4 expression. J Biol. Chem. 287, 40391-9 (2012),
- Mattarollo SR, West AC, Steegh K, et al. NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood. 2012;120(15):3019-29.
- Gurung P, Malireddi RK, Anand PK, et al. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem. 2012;287(41):34474-83.
- Srinivasan G, Aitken JD, Zhang B, et al. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol. 2012;189(4):1911-9.
- Liu Z, Zaki MH, Vogel P, et al. Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem. 2012;287(20):16955-64.
- Hitzler I, Sayi A, Kohler E, et al. Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1β and IL-18. J Immunol. 2012;188(8):3594-602.
- Nagarajan UM, Sikes JD, Yeruva L, Prantner D. Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection. J Immunol. 2012;188(6):2866-75.
- Tsai PY, Ka SM, Chang JM, et al. Therapeutic potential of DCB-SLE1, an extract of a mixture of Chinese medicinal herbs, for severe lupus nephritis. Am J Physiol Renal Physiol. 2011;301(4):F751-64.
- Chen GY, Liu M, Wang F, Bertin J, Núñez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011;186(12):7187-94.
- Kimura K, Sekiguchi S, Hayashi S, et al. Role of interleukin-18 in intrahepatic inflammatory cell recruitment in acute liver injury. J Leukoc Biol. 2011;89(3):433-42..
- Anthony DA, Andrews DM, Chow M, et al. A role for granzyme M in TLR4-driven inflammation and endotoxicosis. J Immunol. 2010;185(3):1794-803.
- Mcphee JB, Mena P, Bliska JB. Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect Immun. 2010;78(8):3529-39.
- Kuroda-morimoto M, Tanaka H, Hayashi N, et al. Contribution of IL-18 to eosinophilic airway inflammation induced by immunization and challenge with Staphylococcus aureus proteins. Int Immunol. 2010;22(7):561-70.
- Humann J, Lenz LL. Activation of naive NK cells in response to Listeria monocytogenes requires IL-18 and contact with infected dendritic cells. J Immunol. 2010;184(9):5172-8.
- Li H, Ambade A, Re F. Cutting edge: Necrosis activates the NLRP3 inflammasome. J Immunol. 2009;183(3):1528-32.
- Hoshino T, Okamoto M, Sakazaki Y, Kato S, Young HA, Aizawa H. Role of proinflammatory cytokines IL-18 and IL-1beta in bleomycin-induced lung injury in humans and mice. Am J Respir Cell Mol Biol. 2009;41(6):661-70.
- Kim J, Shao Y, Kim SY, et al. Hypoxia-induced IL-18 increases hypoxia-inducible factor-1alpha expression through a Rac1-dependent NF-kappaB pathway. Mol Biol Cell. 2008;19(2):433-44.
- Reading PC, Whitney PG, Barr DP, et al. IL-18, but not IL-12, regulates NK cell activity following intranasal herpes simplex virus type 1 infection. J Immunol. 2007;179(5):3214-21.
- Zorrilla EP, Sanchez-alavez M, Sugama S, et al. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci USA. 2007;104(26):11097-102.
- Wiersinga WJ, Wieland CW, Van der windt GJ, et al. Endogenous interleukin-18 improves the early antimicrobial host response in severe melioidosis. Infect Immun. 2007;75(8):3739-46.
- Hoshino T, Kato S, Oka N, et al. Pulmonary inflammation and emphysema: role of the cytokines IL-18 and IL-13. Am J Respir Crit Care Med. 2007;176(1):49-62.
- Qiao H, Sonoda KH, Ikeda Y, et al. Interleukin-18 regulates pathological intraocular neovascularization. J Leukoc Biol. 2007;81(4):1012-21.
- Neumann D, Tschernig T, Popa D, et al. Injection of IL-12- and IL-18-encoding plasmids ameliorates the autoimmune pathology of MRL/Mp-Tnfrsf6lpr mice: synergistic effect on autoimmune symptoms. Int Immunol. 2006;18(12):1779-87.
- Kuranaga N, Kinoshita M, Kawabata T, Habu Y, Shinomiya N, Seki S. Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferon-gamma by inducing IgM production. J Infect Dis. 2006;194(7):993-1002.
- Ito H, Esashi E, Akiyama T, Inoue J, Miyajima A. IL-18 produced by thymic epithelial cells induces development of dendritic cells with CD11b in the fetal thymus. Int Immunol. 2006;18(8):1253-63.
- Takahashi HK, Watanabe T, Yokoyama A, et al. Cimetidine induces interleukin-18 production through H2-agonist activity in monocytes. Mol Pharmacol. 2006;70(2):450-3.
- Terada M, Tsutsui H, Imai Y, et al. Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice. Proc Natl Acad Sci USA. 2006;103(23):8816-21.
- Ino Y, Saeki Y, Fukuhara H, Todo T. Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res. 2006;12(2):643-52.
- Shirota H, Gursel I, Gursel M, Klinman DM. Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock. J Immunol. 2005;174(8):4579-83.
- Yajima T, Nishimura H, Saito K, Kuwano H, Yoshikai Y. Overexpression of Interleukin-15 increases susceptibility to lipopolysaccharide-induced liver injury in mice primed with Mycobacterium bovis bacillus Calmette-Guerin. Infect Immun. 2004;72(7):3855-62.
- Nakano H, Tsutsui H, Terada M, et al. Persistent secretion of IL-18 in the skin contributes to IgE response in mice. Int Immunol. 2003;15(5):611-21.
- Hedtjärn M et al. Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci. (2002)
- Konishi H, et al. IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions. Proc Natl Acad Sci USA. 2002;99(17):11340-5.
- Hoshino T, et al IL-18-transgenic mice: in vivo evidence of a broad role for IL-18 in modulating immune function. J Immunol. 2001;166(12):7014-8.
- Habu Y, et al. The mechanism of a defective IFN-gamma response to bacterial toxins in an atopic dermatitis model, NC/Nga mice, and the therapeutic effect of IFN-gamma, IL-12, or IL-18 on dermatitis. J Immunol. 2001;166(9):5439-47.
- Seki E, Tsutsui H, Nakano H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J Immunol. 2001;166(4):2651-7.
- Wang J et al. Caspase-11-dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18. PLoS Pathog. 14, e1007105 (2018)
- de la Roche M et al. Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation. J Cell Biol. 217, 3560-3576 (2018)
References
- Anthony DA, et al., J Immunol, 185, 1794 (2010)
- Banerjee S, et al., J Biol Chem, 283, 31371 (2008)
- Broz P, et al., J Exp Med, 207, 1745 (2010)
- Chen GY, et al., J Immunol, 186, 7187 (2011)
- Costa A, et al., J Immunol, 188, 1953 (2012)
- Gurung P, et al., J Biol Chem, 287, 34474 (2012)
- Habu Y, et al., J Immunol, 166, 5439 (2001)
- Hitzler I, et al., J Immunol, 188, 3594 (2012)
- Hoshino T, et al., Am J Respir Cell Mol Biol, 41, 661 (2009)
- Hoshino T, et al., Am J Respir Crit Care Med, 176, 49 (2007)
- Hoshino T, et al., J Immunol, 166, 7014 (2001)
- Humann J, et al., J Immunol, 184, 5172 (2010)
- Ino Y, et al., Clin Cancer Res, 12, 643 (2006)
- Ito H, et al., Int Immunol, 18, 1253 (2006)
- Kim J, et al., Mol Biol Cell, 19, 433 (2008)
- Kimura K, et al., J Leukoc Biol, 89, 433 (2011)
- Konishi H, et al., PNAS, 99, 11340 (2002)
- Kuranaga N, et al., J Infect Dis, 194, 993 (2006)
- Kuroda-Morimoto M, et al., Int Immunol, 22, 561 (2010)
- Li H, et al., J Immunol, 183, 1528 (2009)
- Liu Z, et al., J Biol Chem, 287, 16955 (2012)
- Mattarollo SR, et al., Blood, 120, 3019 (2012)
- McPhee JB, et al., Infect Immun, 78, 3529 (2010)
- Meldrum KK, et al., J Biol Chem, 287, 40391 (2012)
- Nagarajan UM, et al., J Immunol, 188, 2866 (2012)
- Nakano H, et al., Int Immunol, 15, 611 (2003)
- Neumann D, et al., Int Immunol, 18, 1779 (2006)
- Paget C, et al., J Immunol, 188, 3928 (2012)
- Qiao H, et al., J Leukoc Biol, 81, 1012 (2007)
- Reading PC, et al., J Immunol, 179, 3214 (2007)
- Rodriguez-Galan MC, et al., J Immunol, 183, 740 (2009)
- Sasaki Y, et al., J Exp Med, 202, 607 (2005)
- Seki E, et al., J Immunol, 166, 2651 (2001)
- Shirota H, et al., J Immunol, 174, 4579 (2005)
- Srinivasan G, et al., J Immunol, 189, 1911 (2012)
- Takahashi HK, et al., Mol Pharmacol, 70, 450 (2006)
- Terada M, et al., PNAS, 103, 8816 (2006)
- Tsai PY, et al., Am J Physiol Renal Physiol, 301, F751 (2011)
- Wiersinga WJ, et al., Infect Immun, 75, 3739 (2007)
- Yajima T, et al., Infect Immun, 72, 3855 (2004)
- Zorrilla EP, et al., PNSA, 104, 11097 (2007)