Mouse IL-18 ELISA Kit

  • Applications
    • ELISA
  • Code # 7625
  • Size 96 Wells
  • Price
    $595.00
Specifications

Background

Interleukin 18 (IL-18) is an 18 kDa cytokine which is identified as a costimulatory factor for production of interferon-γ (IFN-γ) in response to toxic shock. It shares functional similarities with IL-12. IL-18 is synthesized as a precursor 24 kDa molecule without a signal peptide and must be cleaved to produce an active molecule. IL-1β converting enzyme (ICE, caspase-1) cleaves pro-IL-18 at aspartic acid in the P1 position, producing the mature, bioactive peptide that is readily released from the cells. It has been reported that IL-18 is produced from dendritic cells, activated macrophages, Kupffer cells, keratinocytes, intestinal epithelial cells, osteoblasts, adrenal cortex cells and murine diencephalons. IFN- is produced by activated T and NK cells and plays critical roles in the defense against microbial pathogens. IFN-γ activates macrophages, enhances NK activity and B cell maturation, proliferation and Ig secretion, induces MHC class I and II antigens expression, and inhibits osteoclast activation. IL-18 acts on T helper 1-type (Th1) cells, and in combination with IL-12 strongly induces production of IFN-γ by these cells. Pleiotropic effects of IL-18 have also been reported, including enhancement production of IFN-γ and GM-CSF in peripheral blood mononuclear cells, production of Th1 cytokines, IL-2, GM-CSF and IFN-γ in T cells, enhancement of Fas ligand expression by Th1 cells. The “Human IL-18 ELISA Kit” is a useful reagent for specifically measuring human IL-18 with high sensitivity by ELISA. This Kit does not detect 1 ng/mL of various cytokines, such as human IFN-α, IFN-γ, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-12, GM-CSF and murine IL-18. The results were all bellow the detection limit of 12.5 pg/mL.
  • Application:
    ELISA
  • Components:
    Microwell strips coated with anti-Mouse IL-18 antibody 8-well strip x 12 strips, Mouse IL-18 calibrator (Lyophilized) 2 vials, Conjugate reagent (Peroxidase conjugate anti-mouse IL-18 monoclonal antibody) (x101) 0.2 ml x 1 vial, Conjugate diluent (ready to use) 24 ml x1 vial, Assay diluent (ready to use) 30 ml x 1 vial, Washing buffer (powder) 3 packages, Substrate reagent (TMB/H2O2) (ready to use) 15 ml x 1 vial, Stop solution (2N H2SO4) (ready to use) (irritant) 18 ml x1 vial
  • Description:
    The Human Il-18 ELISA Kit is based on sandwich ELISA and is capable of measuring mouse Il-18. This kit has a high sensitivity (25.0 pg/ml) and has over 65 citations.
  • Gene ID (Human):
  • Gene ID (Mouse):
  • Product Type:
    ELISA Kit
  • Sensitivity:
    25.0 pg/ml
  • Short Description:
    The Mouse IL-18 ELISA Kit is based on sandwich ELISA and capable of measuring mouse IL-18.
  • Size:
    96 Wells
Citations
  1. Sasaki Y et al. IL-18 with IL-2 protects against Strongyloides venezuelensis infection by activating mucosal mast cell-dependent type 2 innate immunity. J Exp Med. 202, 607-16 (2005)
  2. Banerjee S and Bond JS. Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem. 283, 31371-7 (2008)
  3. Rodriguez-Galan MC et al. Coexpression of IL-18 strongly attenuates IL-12-induced systemic toxicity through a rapid induction of IL-10 without affecting its antitumor capacity. J Immunol. 183, 740-8 (2009)
  4. Broz P et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med. 207, 1745-55 (2010),
  5. Costa A et al. Activation of the NLRP3 inflammasome by group B streptococci. J Immunol. 188, 1953-60 (2012),
  6. Paget C et al. Role of γδ T cells in α-galactosylceramide-mediated immunity. J Immunol. 188, 3928-39 (2012)
  7. Grung P et al. Toll or Interleukin-1 Receptor (TIR) Domain-containing adaptor inducing interferon-  (TRIF)-mediated Caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem. 287, 34474-83 (2012),
  8. Meldrum KK et al. Profibrotic effect of interleukin-18 in HK-2 cells is dependent on stimulation of the Toll-like receptor 4 (TLR4) promoter and increased TLR4 expression. J Biol. Chem. 287, 40391-9 (2012),
  9. Mattarollo SR, West AC, Steegh K, et al. NKT cell adjuvant-based tumor vaccine for treatment of myc oncogene-driven mouse B-cell lymphoma. Blood. 2012;120(15):3019-29.
  10. Gurung P, Malireddi RK, Anand PK, et al. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem. 2012;287(41):34474-83.
  11. Srinivasan G, Aitken JD, Zhang B, et al. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis. J Immunol. 2012;189(4):1911-9.
  12. Liu Z, Zaki MH, Vogel P, et al. Role of inflammasomes in host defense against Citrobacter rodentium infection. J Biol Chem. 2012;287(20):16955-64.
  13. Hitzler I, Sayi A, Kohler E, et al. Caspase-1 has both proinflammatory and regulatory properties in Helicobacter infections, which are differentially mediated by its substrates IL-1β and IL-18. J Immunol. 2012;188(8):3594-602.
  14. Nagarajan UM, Sikes JD, Yeruva L, Prantner D. Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection. J Immunol. 2012;188(6):2866-75.
  15. Tsai PY, Ka SM, Chang JM, et al. Therapeutic potential of DCB-SLE1, an extract of a mixture of Chinese medicinal herbs, for severe lupus nephritis. Am J Physiol Renal Physiol. 2011;301(4):F751-64.
  16. Chen GY, Liu M, Wang F, Bertin J, Núñez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011;186(12):7187-94.
  17. Kimura K, Sekiguchi S, Hayashi S, et al. Role of interleukin-18 in intrahepatic inflammatory cell recruitment in acute liver injury. J Leukoc Biol. 2011;89(3):433-42..
  18. Anthony DA, Andrews DM, Chow M, et al. A role for granzyme M in TLR4-driven inflammation and endotoxicosis. J Immunol. 2010;185(3):1794-803.
  19. Mcphee JB, Mena P, Bliska JB. Delineation of regions of the Yersinia YopM protein required for interaction with the RSK1 and PRK2 host kinases and their requirement for interleukin-10 production and virulence. Infect Immun. 2010;78(8):3529-39.
  20. Kuroda-morimoto M, Tanaka H, Hayashi N, et al. Contribution of IL-18 to eosinophilic airway inflammation induced by immunization and challenge with Staphylococcus aureus proteins. Int Immunol. 2010;22(7):561-70.
  21. Humann J, Lenz LL. Activation of naive NK cells in response to Listeria monocytogenes requires IL-18 and contact with infected dendritic cells. J Immunol. 2010;184(9):5172-8.
  22. Li H, Ambade A, Re F. Cutting edge: Necrosis activates the NLRP3 inflammasome. J Immunol. 2009;183(3):1528-32.
  23. Hoshino T, Okamoto M, Sakazaki Y, Kato S, Young HA, Aizawa H. Role of proinflammatory cytokines IL-18 and IL-1beta in bleomycin-induced lung injury in humans and mice. Am J Respir Cell Mol Biol. 2009;41(6):661-70.
  24. Kim J, Shao Y, Kim SY, et al. Hypoxia-induced IL-18 increases hypoxia-inducible factor-1alpha expression through a Rac1-dependent NF-kappaB pathway. Mol Biol Cell. 2008;19(2):433-44.
  25. Reading PC, Whitney PG, Barr DP, et al. IL-18, but not IL-12, regulates NK cell activity following intranasal herpes simplex virus type 1 infection. J Immunol. 2007;179(5):3214-21.
  26. Zorrilla EP, Sanchez-alavez M, Sugama S, et al. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci USA. 2007;104(26):11097-102.
  27. Wiersinga WJ, Wieland CW, Van der windt GJ, et al. Endogenous interleukin-18 improves the early antimicrobial host response in severe melioidosis. Infect Immun. 2007;75(8):3739-46.
  28. Hoshino T, Kato S, Oka N, et al. Pulmonary inflammation and emphysema: role of the cytokines IL-18 and IL-13. Am J Respir Crit Care Med. 2007;176(1):49-62.
  29. Qiao H, Sonoda KH, Ikeda Y, et al. Interleukin-18 regulates pathological intraocular neovascularization. J Leukoc Biol. 2007;81(4):1012-21.
  30. Neumann D, Tschernig T, Popa D, et al. Injection of IL-12- and IL-18-encoding plasmids ameliorates the autoimmune pathology of MRL/Mp-Tnfrsf6lpr mice: synergistic effect on autoimmune symptoms. Int Immunol. 2006;18(12):1779-87.
  31. Kuranaga N, Kinoshita M, Kawabata T, Habu Y, Shinomiya N, Seki S. Interleukin-18 protects splenectomized mice from lethal Streptococcus pneumoniae sepsis independent of interferon-gamma by inducing IgM production. J Infect Dis. 2006;194(7):993-1002.
  32. Ito H, Esashi E, Akiyama T, Inoue J, Miyajima A. IL-18 produced by thymic epithelial cells induces development of dendritic cells with CD11b in the fetal thymus. Int Immunol. 2006;18(8):1253-63.
  33. Takahashi HK, Watanabe T, Yokoyama A, et al. Cimetidine induces interleukin-18 production through H2-agonist activity in monocytes. Mol Pharmacol. 2006;70(2):450-3.
  34. Terada M, Tsutsui H, Imai Y, et al. Contribution of IL-18 to atopic-dermatitis-like skin inflammation induced by Staphylococcus aureus product in mice. Proc Natl Acad Sci USA. 2006;103(23):8816-21.
  35. Ino Y, Saeki Y, Fukuhara H, Todo T. Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res. 2006;12(2):643-52.
  36. Shirota H, Gursel I, Gursel M, Klinman DM. Suppressive oligodeoxynucleotides protect mice from lethal endotoxic shock. J Immunol. 2005;174(8):4579-83.
  37. Yajima T, Nishimura H, Saito K, Kuwano H, Yoshikai Y. Overexpression of Interleukin-15 increases susceptibility to lipopolysaccharide-induced liver injury in mice primed with Mycobacterium bovis bacillus Calmette-Guerin. Infect Immun. 2004;72(7):3855-62.
  38. Nakano H, Tsutsui H, Terada M, et al. Persistent secretion of IL-18 in the skin contributes to IgE response in mice. Int Immunol. 2003;15(5):611-21.
  39. Hedtjärn M et al. Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci. (2002)
  40. Konishi H, et al. IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions. Proc Natl Acad Sci USA. 2002;99(17):11340-5.
  41. Hoshino T, et al IL-18-transgenic mice: in vivo evidence of a broad role for IL-18 in modulating immune function. J Immunol. 2001;166(12):7014-8.
  42. Habu Y, et al. The mechanism of a defective IFN-gamma response to bacterial toxins in an atopic dermatitis model, NC/Nga mice, and the therapeutic effect of IFN-gamma, IL-12, or IL-18 on dermatitis. J Immunol. 2001;166(9):5439-47.
  43. Seki E, Tsutsui H, Nakano H, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J Immunol. 2001;166(4):2651-7.
References
  1. Anthony DA, et al., J Immunol, 185, 1794 (2010)
  2. Banerjee S, et al., J Biol Chem, 283, 31371 (2008)
  3. Broz P, et al., J Exp Med, 207, 1745 (2010)
  4. Chen GY, et al., J Immunol, 186, 7187 (2011)
  5. Costa A, et al., J Immunol, 188, 1953 (2012)
  6. Gurung P, et al., J Biol Chem, 287, 34474 (2012)
  7. Habu Y, et al., J Immunol, 166, 5439 (2001)
  8. Hitzler I, et al., J Immunol, 188, 3594 (2012)
  9. Hoshino T, et al., Am J Respir Cell Mol Biol, 41, 661 (2009)
  10. Hoshino T, et al., Am J Respir Crit Care Med, 176, 49 (2007)
  11. Hoshino T, et al., J Immunol, 166, 7014 (2001)
  12. Humann J, et al., J Immunol, 184, 5172 (2010)
  13. Ino Y, et al., Clin Cancer Res, 12, 643 (2006)
  14. Ito H, et al., Int Immunol, 18, 1253 (2006)
  15. Kim J, et al., Mol Biol Cell, 19, 433 (2008)
  16. Kimura K, et al., J Leukoc Biol, 89, 433 (2011)
  17. Konishi H, et al., PNAS, 99, 11340 (2002)
  18. Kuranaga N, et al., J Infect Dis, 194, 993 (2006)
  19. Kuroda-Morimoto M, et al., Int Immunol, 22, 561 (2010)
  20. Li H, et al., J Immunol, 183, 1528 (2009)
  21. Liu Z, et al., J Biol Chem, 287, 16955 (2012)
  22. Mattarollo SR, et al., Blood, 120, 3019 (2012)
  23. McPhee JB, et al., Infect Immun, 78, 3529 (2010)
  24. Meldrum KK, et al., J Biol Chem, 287, 40391 (2012)
  25. Nagarajan UM, et al., J Immunol, 188, 2866 (2012)
  26. Nakano H, et al., Int Immunol, 15, 611 (2003)
  27. Neumann D, et al., Int Immunol, 18, 1779 (2006)
  28. Paget C, et al., J Immunol, 188, 3928 (2012)
  29. Qiao H, et al., J Leukoc Biol, 81, 1012 (2007)
  30. Reading PC, et al., J Immunol, 179, 3214 (2007)
  31. Rodriguez-Galan MC, et al., J Immunol, 183, 740 (2009)
  32. Sasaki Y, et al., J Exp Med, 202, 607 (2005)
  33. Seki E, et al., J Immunol, 166, 2651 (2001)
  34. Shirota H, et al., J Immunol, 174, 4579 (2005)
  35. Srinivasan G, et al., J Immunol, 189, 1911 (2012)
  36. Takahashi HK, et al., Mol Pharmacol, 70, 450 (2006)
  37. Terada M, et al., PNAS, 103, 8816 (2006)
  38. Tsai PY, et al., Am J Physiol Renal Physiol, 301, F751 (2011)
  39. Wiersinga WJ, et al., Infect Immun, 75, 3739 (2007)
  40. Yajima T, et al., Infect Immun, 72, 3855 (2004)
  41. Zorrilla EP, et al., PNSA, 104, 11097 (2007)